|
import os |
|
|
|
os.system("pip install git+https://github.com/shumingma/transformers.git") |
|
|
|
import threading |
|
import torch |
|
import torch._dynamo |
|
torch._dynamo.config.suppress_errors = True |
|
|
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
TextIteratorStreamer, |
|
) |
|
|
|
import gradio as gr |
|
|
|
model_id = "microsoft/bitnet-b1.58-2B-4T" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).to("cpu") |
|
|
|
def respond( |
|
message: str, |
|
history: list[tuple[str,str]], |
|
system_message: str, |
|
max_tokens: int, |
|
temperature: float, |
|
top_p: float, |
|
|
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, bot_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if bot_msg: |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, skip_prompt=True, skip_special_tokens=True |
|
) |
|
generate_kwargs = dict( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
) |
|
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
response = "" |
|
for new_text in streamer: |
|
response += new_text |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
title="Scientific Article Summarizer using BITNet", |
|
description="Copia/pega el texto a resumir de cualquier articulo", |
|
examples=[ |
|
[ |
|
"Copia todo el texto del articulo cientifico a resumir", |
|
"You are a profesional assistant that summarizes scientific articles.", |
|
512, |
|
0.7, |
|
0.95, |
|
], |
|
], |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a helpful assistant that summarizes scientific articles.", |
|
label="System message" |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)" |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |