Spaces:
Sleeping
Sleeping
# Code source: Gaël Varoquaux | |
# License: BSD 3 clause | |
# This code is a MOD with Gradio Demo | |
import numpy as np | |
import plotly.graph_objects as go | |
from sklearn import decomposition | |
from sklearn import datasets | |
import gradio as gr | |
np.random.seed(5) | |
## PCA | |
def PCA_Pred(x1, x2, x3, x4): | |
#Load Data from iris dataset: | |
iris = datasets.load_iris() | |
X = iris.data | |
Y = iris.target | |
label_data = [("Setosa", 0), ("Versicolour", 1), ("Virginica", 2)] | |
#Create the model with 3 principal components: | |
pca = decomposition.PCA(n_components=3) | |
#Fit model and transform (decrease dimensions) iris dataset: | |
pca.fit(X) | |
X = pca.transform(X) | |
#Create figure with plotly | |
fig = go.Figure() | |
for name, label in label_data: | |
fig.add_trace(go.Scatter3d( | |
x=X[Y == label, 0], | |
y=X[Y == label, 1], | |
z=X[Y == label, 2], | |
mode='markers', | |
marker=dict( | |
size=8, | |
color=label, | |
colorscale='Viridis', | |
opacity=0.8), | |
name=name | |
)) | |
user_iris_data = np.array([[x1, x2, x3, x4]], ndmin=2) | |
#Perform reduction to user data | |
pc_output = pca.transform(user_iris_data) | |
fig.add_traces([go.Scatter3d( | |
x=np.array(pc_output[0, 0]), | |
y=np.array(pc_output[0, 1]), | |
z=np.array(pc_output[0, 2]), | |
mode='markers', | |
marker=dict( | |
size=12, | |
color=4, # set color | |
colorscale='Viridis', # choose a colorscale | |
opacity=0.8), | |
name="User data" | |
)]) | |
fig.update_layout(scene = dict( | |
xaxis_title="1st PCA Axis", | |
yaxis_title="2nd PCA Axis", | |
zaxis_title="3th PCA Axis"), | |
legend_title="Species" | |
) | |
return [pc_output, fig] | |
title = "PCA example with Iris Dataset 🌺" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"## {title}") | |
gr.Markdown( | |
""" | |
The following app is a demo for PCA decomposition. It takes 4 dimensions as input, in reference \ | |
to the following image, and returns the transformed first three principal components (feature \ | |
reduction), taken from a pre-trained model with Iris dataset. | |
""") | |
html = ( | |
"<div >" | |
"<img src='file/iris_dataset_info.png' alt='image one'>" | |
+ "</div>" | |
) | |
gr.HTML(html) | |
with gr.Row(): | |
with gr.Column(): | |
inp1 = gr.Slider(0, 7, value=1, step=0.1, label="Sepal Length (cm)") | |
inp2 = gr.Slider(0, 5, value=1, step=0.1, label="Sepal Width (cm)") | |
inp3 = gr.Slider(0, 7, value=1, step=0.1, label="Petal Length (cm)") | |
inp4 = gr.Slider(0, 5, value=1, step=0.1, label="Petal Width (cm)") | |
output = gr.Textbox(label="PCA Ejes") | |
with gr.Column(): | |
plot = gr.Plot(label="PCA 3D Spacio") | |
Reduction = gr.Button("PCA Transformación") | |
Reduction.click(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot]) | |
demo.load(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot]) | |
demo.launch() |