# Code source: Gaël Varoquaux # License: BSD 3 clause # This code is a MOD with Gradio Demo import numpy as np import plotly.graph_objects as go from sklearn import decomposition from sklearn import datasets import gradio as gr np.random.seed(5) ## PCA def PCA_Pred(x1, x2, x3, x4): #Load Data from iris dataset: iris = datasets.load_iris() X = iris.data Y = iris.target label_data = [("Setosa", 0), ("Versicolour", 1), ("Virginica", 2)] #Create the model with 3 principal components: pca = decomposition.PCA(n_components=3) #Fit model and transform (decrease dimensions) iris dataset: pca.fit(X) X = pca.transform(X) #Create figure with plotly fig = go.Figure() for name, label in label_data: fig.add_trace(go.Scatter3d( x=X[Y == label, 0], y=X[Y == label, 1], z=X[Y == label, 2], mode='markers', marker=dict( size=8, color=label, colorscale='Viridis', opacity=0.8), name=name )) user_iris_data = np.array([[x1, x2, x3, x4]], ndmin=2) #Perform reduction to user data pc_output = pca.transform(user_iris_data) fig.add_traces([go.Scatter3d( x=np.array(pc_output[0, 0]), y=np.array(pc_output[0, 1]), z=np.array(pc_output[0, 2]), mode='markers', marker=dict( size=12, color=4, # set color colorscale='Viridis', # choose a colorscale opacity=0.8), name="User data" )]) fig.update_layout(scene = dict( xaxis_title="1st PCA Axis", yaxis_title="2nd PCA Axis", zaxis_title="3th PCA Axis"), legend_title="Species" ) return [pc_output, fig] title = "PCA example with Iris Dataset 🌺" with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown( """ The following app is a demo for PCA decomposition. It takes 4 dimensions as input, in reference \ to the following image, and returns the transformed first three principal components (feature \ reduction), taken from a pre-trained model with Iris dataset. """) html = ( "
" "image one" + "
" ) gr.HTML(html) with gr.Row(): with gr.Column(): inp1 = gr.Slider(0, 7, value=1, step=0.1, label="Sepal Length (cm)") inp2 = gr.Slider(0, 5, value=1, step=0.1, label="Sepal Width (cm)") inp3 = gr.Slider(0, 7, value=1, step=0.1, label="Petal Length (cm)") inp4 = gr.Slider(0, 5, value=1, step=0.1, label="Petal Width (cm)") output = gr.Textbox(label="PCA Ejes") with gr.Column(): plot = gr.Plot(label="PCA 3D Spacio") Reduction = gr.Button("PCA Transformación") Reduction.click(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot]) demo.load(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot]) demo.launch()