diffuse-custom / diffusers /schedulers /scheduling_ipndm.py
Jackflack09's picture
Duplicate from YeOldHermit/Super-Resolution-Anime-Diffusion
522606a
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class IPNDMScheduler(SchedulerMixin, ConfigMixin):
"""
Improved Pseudo numerical methods for diffusion models (iPNDM) ported from @crowsonkb's amazing k-diffusion
[library](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296)
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
For more details, see the original paper: https://arxiv.org/abs/2202.09778
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
"""
order = 1
@register_to_config
def __init__(
self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None
):
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(num_train_timesteps)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
self.pndm_order = 4
# running values
self.ets = []
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1]
steps = torch.cat([steps, torch.tensor([0.0])])
if self.config.trained_betas is not None:
self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32)
else:
self.betas = torch.sin(steps * math.pi / 2) ** 2
self.alphas = (1.0 - self.betas**2) ** 0.5
timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1]
self.timesteps = timesteps.to(device)
self.ets = []
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
times to approximate the solution.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
timestep_index = (self.timesteps == timestep).nonzero().item()
prev_timestep_index = timestep_index + 1
ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(ets)
if len(self.ets) == 1:
ets = self.ets[-1]
elif len(self.ets) == 2:
ets = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets) == 3:
ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets)
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets):
alpha = self.alphas[timestep_index]
sigma = self.betas[timestep_index]
next_alpha = self.alphas[prev_timestep_index]
next_sigma = self.betas[prev_timestep_index]
pred = (sample - sigma * ets) / max(alpha, 1e-8)
prev_sample = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__(self):
return self.config.num_train_timesteps