|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from typing import TypedDict, Annotated, Union, Dict, Any |
|
from smolagents import DuckDuckGoSearchTool |
|
from langchain_community.tools import DuckDuckGoSearchRun |
|
from tools import get_hub_stats, analyze_image, read_excel_file, download_file, execute_python_code, transcribe_audio |
|
from langchain.tools import Tool |
|
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage, AIMessage |
|
from langgraph.graph import START, StateGraph |
|
from langgraph.graph.message import add_messages |
|
from langgraph.prebuilt import ToolNode, tools_condition |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
fixed_answer = "This is a default answer." |
|
print(f"Agent returning fixed answer: {fixed_answer}") |
|
return fixed_answer |
|
|
|
class NewAgent: |
|
def __init__(self): |
|
print("NewAgent initialized.") |
|
def __call__(self, question: str, file_name: str = "", task_id: str = "") -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
|
|
local_file_path = "" |
|
if file_name and task_id: |
|
print(f"Auto-downloading file: {file_name} for task: {task_id}") |
|
local_file_path = download_file(task_id, file_name) |
|
if local_file_path.startswith("Error"): |
|
print(f"File download failed: {local_file_path}") |
|
else: |
|
print(f"File downloaded successfully to: {local_file_path}") |
|
|
|
|
|
search_tool = DuckDuckGoSearchRun() |
|
|
|
hub_stats_tool = Tool( |
|
name="get_hub_stats", |
|
func=get_hub_stats, |
|
description="Fetches the most downloaded model from a specific author on the Hugging Face Hub." |
|
) |
|
|
|
image_analysis_tool = Tool( |
|
name="analyze_image", |
|
func=analyze_image, |
|
description="Analyzes images and answers questions about their content. Input should be the path to an image file." |
|
) |
|
|
|
read_excel_tool = Tool( |
|
name="read_excel_file", |
|
func=read_excel_file, |
|
description="Reads an Excel file and returns structured information about its contents." |
|
) |
|
|
|
python_exec_tool = Tool( |
|
name="execute_python_code", |
|
func=execute_python_code, |
|
description="Executes a Python file and returns its output. Input should be the path to a Python file." |
|
) |
|
|
|
transcribe_audio_tool = Tool( |
|
name="transcribe_audio", |
|
func=transcribe_audio, |
|
description="Transcribe audio file using OpenAI Whisper" |
|
) |
|
|
|
tools = [ |
|
search_tool, |
|
hub_stats_tool, |
|
image_analysis_tool, |
|
read_excel_tool, |
|
python_exec_tool, |
|
transcribe_audio_tool, |
|
] |
|
|
|
llm = ChatOpenAI(model="gpt-4.1") |
|
llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False) |
|
|
|
|
|
class AgentState(TypedDict): |
|
messages: Annotated[list[AnyMessage], add_messages] |
|
def assistant(state: AgentState): |
|
sys_msg = SystemMessage( |
|
content=f""" |
|
You are a general AI assistant. I will ask you a question. |
|
If a file_name is provided, it indicates there's an associated file you may need to analyze. |
|
You can download files using the download_file tool with the format 'task_id,filename'. |
|
After downloading, you can analyze images with analyze_image or Excel files with read_excel_file. |
|
If you cannot find an answer, you may report your thoughts and an explanation why. |
|
If there is an error, such as a missing dependancy, return the error message. |
|
If you find an answer, your response should only contain your final answer. Report nothing before or after this answer. |
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. |
|
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. |
|
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. |
|
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
Current task_id: {task_id} |
|
Current file (if any): {file_name} |
|
Downloaded file path: {local_file_path} |
|
""" |
|
) |
|
return { |
|
"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])], |
|
} |
|
|
|
|
|
builder = StateGraph(AgentState) |
|
|
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
|
|
|
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
alfred = builder.compile() |
|
|
|
messages = [HumanMessage(content=question)] |
|
response = alfred.invoke({"messages": messages}) |
|
return response['messages'][-1].content |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
|
|
agent = NewAgent() |
|
|
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name", "") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text, file_name, task_id) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "File": file_name, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "File": file_name, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
f"\n\n" |
|
f"result_data: {result_data}" |
|
) |
|
print(result_data) |
|
print(f"\n\n") |
|
print("Submission successful.") |
|
|
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |