Spaces:
Running
on
T4
Running
on
T4
import numpy as np | |
import torch | |
from plyfile import PlyData, PlyElement | |
import cv2 | |
import trimesh | |
def get_pcd_base(H, W, u0, v0, fx, fy): | |
x_row = np.arange(0, W) | |
x = np.tile(x_row, (H, 1)) | |
x = x.astype(np.float32) | |
u_m_u0 = x - u0 | |
y_col = np.arange(0, H) # y_col = np.arange(0, height) | |
y = np.tile(y_col, (W, 1)).T | |
y = y.astype(np.float32) | |
v_m_v0 = y - v0 | |
x = u_m_u0 / fx | |
y = v_m_v0 / fy | |
z = np.ones_like(x) | |
pw = np.stack([x, y, z], axis=2) # [h, w, c] | |
return pw | |
def reconstruct_pcd(depth, fx, fy, u0, v0, pcd_base=None, mask=None): | |
if type(depth) == torch.__name__: | |
depth = depth.cpu().numpy().squeeze() | |
depth = cv2.medianBlur(depth, 5) | |
if pcd_base is None: | |
H, W = depth.shape | |
pcd_base = get_pcd_base(H, W, u0, v0, fx, fy) | |
pcd = depth[:, :, None] * pcd_base | |
if mask: | |
pcd[mask] = 0 | |
return pcd | |
def save_point_cloud(pcd, rgb, filename, binary=True): | |
"""Save an RGB point cloud as a PLY file. | |
:paras | |
@pcd: Nx3 matrix, the XYZ coordinates | |
@rgb: Nx3 matrix, the rgb colors for each 3D point | |
""" | |
assert pcd.shape[0] == rgb.shape[0] | |
if rgb is None: | |
gray_concat = np.tile(np.array([128], dtype=np.uint8), | |
(pcd.shape[0], 3)) | |
points_3d = np.hstack((pcd, gray_concat)) | |
else: | |
points_3d = np.hstack((pcd, rgb)) | |
python_types = (float, float, float, int, int, int) | |
npy_types = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), | |
('green', 'u1'), ('blue', 'u1')] | |
if binary is True: | |
# Format into Numpy structured array | |
vertices = [] | |
for row_idx in range(points_3d.shape[0]): | |
cur_point = points_3d[row_idx] | |
vertices.append( | |
tuple( | |
dtype(point) | |
for dtype, point in zip(python_types, cur_point))) | |
vertices_array = np.array(vertices, dtype=npy_types) | |
el = PlyElement.describe(vertices_array, 'vertex') | |
# write | |
PlyData([el]).write(filename) | |
else: | |
x = np.squeeze(points_3d[:, 0]) | |
y = np.squeeze(points_3d[:, 1]) | |
z = np.squeeze(points_3d[:, 2]) | |
r = np.squeeze(points_3d[:, 3]) | |
g = np.squeeze(points_3d[:, 4]) | |
b = np.squeeze(points_3d[:, 5]) | |
ply_head = 'ply\n' \ | |
'format ascii 1.0\n' \ | |
'element vertex %d\n' \ | |
'property float x\n' \ | |
'property float y\n' \ | |
'property float z\n' \ | |
'property uchar red\n' \ | |
'property uchar green\n' \ | |
'property uchar blue\n' \ | |
'end_header' % r.shape[0] | |
# ---- Save ply data to disk | |
np.savetxt(filename, np.column_stack([x, y, z, r, g, b]), fmt='%f %f %f %d %d %d', header=ply_head, comments='') | |
def ply_to_obj(ply_file, obj_file): | |
mesh = trimesh.load_mesh(ply_file) | |
# T2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) | |
# mesh.apply_transform(T2) | |
mesh.export(obj_file) | |
# import numpy as np | |
# def save_point_cloud_to_obj(points, colors, file_name): | |
# """ | |
# Save a numpy array of point cloud data with color to an OBJ file. | |
# Args: | |
# points (np.ndarray): A numpy array of shape (H, W, 3) where H is height, W is width. | |
# colors (np.ndarray): A numpy array of color data, shape (H, W, 3), values should be in [0, 1]. | |
# file_name (str): The path to the output .obj file. | |
# """ | |
# H, W, _ = points.shape | |
# assert points.shape == colors.shape, "Points and colors must have the same shape" | |
# with open(file_name, 'w') as file: | |
# for i in range(H): | |
# for j in range(W): | |
# x, y, z = points[i, j] | |
# r, g, b = colors[i, j] | |
# file.write(f"v {x} {y} {z} {r} {g} {b}\n") | |