Spaces:
Sleeping
Sleeping
| # -------------------------------------------------------- | |
| # Based on BEiT, timm, DINO and DeiT code bases | |
| # https://github.com/microsoft/unilm/tree/master/beit | |
| # https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
| # https://github.com/facebookresearch/deit | |
| # https://github.com/facebookresearch/dino | |
| # --------------------------------------------------------' | |
| from functools import partial | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from .videomaev2_finetune import ( | |
| Block, | |
| PatchEmbed, | |
| _cfg, | |
| get_sinusoid_encoding_table, | |
| ) | |
| from .videomaev2_finetune import trunc_normal_ as __call_trunc_normal_ | |
| def trunc_normal_(tensor, mean=0., std=1.): | |
| __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) | |
| class PretrainVisionTransformerEncoder(nn.Module): | |
| """ Vision Transformer with support for patch or hybrid CNN input stage | |
| """ | |
| def __init__(self, | |
| img_size=224, | |
| patch_size=16, | |
| in_chans=3, | |
| num_classes=0, | |
| embed_dim=768, | |
| depth=12, | |
| num_heads=12, | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0., | |
| norm_layer=nn.LayerNorm, | |
| init_values=None, | |
| tubelet_size=2, | |
| use_learnable_pos_emb=False, | |
| with_cp=False, | |
| all_frames=16, | |
| cos_attn=False): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| # num_features for consistency with other models | |
| self.num_features = self.embed_dim = embed_dim | |
| self.patch_embed = PatchEmbed( | |
| img_size=img_size, | |
| patch_size=patch_size, | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| num_frames=all_frames, | |
| tubelet_size=tubelet_size) | |
| num_patches = self.patch_embed.num_patches | |
| self.with_cp = with_cp | |
| if use_learnable_pos_emb: | |
| self.pos_embed = nn.Parameter( | |
| torch.zeros(1, num_patches + 1, embed_dim)) | |
| else: | |
| # sine-cosine positional embeddings | |
| self.pos_embed = get_sinusoid_encoding_table( | |
| num_patches, embed_dim) | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
| ] # stochastic depth decay rule | |
| self.blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[i], | |
| norm_layer=norm_layer, | |
| init_values=init_values, | |
| cos_attn=cos_attn) for i in range(depth) | |
| ]) | |
| self.norm = norm_layer(embed_dim) | |
| self.head = nn.Linear( | |
| embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| if use_learnable_pos_emb: | |
| trunc_normal_(self.pos_embed, std=.02) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def get_num_layers(self): | |
| return len(self.blocks) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token'} | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear( | |
| self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x, mask): | |
| x = self.patch_embed(x) | |
| x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() | |
| B, _, C = x.shape | |
| x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible | |
| for blk in self.blocks: | |
| if self.with_cp: | |
| x_vis = cp.checkpoint(blk, x_vis) | |
| else: | |
| x_vis = blk(x_vis) | |
| x_vis = self.norm(x_vis) | |
| return x_vis | |
| def forward(self, x, mask): | |
| x = self.forward_features(x, mask) | |
| x = self.head(x) | |
| return x | |
| class PretrainVisionTransformerDecoder(nn.Module): | |
| """ Vision Transformer with support for patch or hybrid CNN input stage | |
| """ | |
| def __init__(self, | |
| patch_size=16, | |
| num_classes=768, | |
| embed_dim=768, | |
| depth=12, | |
| num_heads=12, | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0., | |
| norm_layer=nn.LayerNorm, | |
| init_values=None, | |
| num_patches=196, | |
| tubelet_size=2, | |
| with_cp=False, | |
| cos_attn=False): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| assert num_classes == 3 * tubelet_size * patch_size**2 | |
| # num_features for consistency with other models | |
| self.num_features = self.embed_dim = embed_dim | |
| self.patch_size = patch_size | |
| self.with_cp = with_cp | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
| ] # stochastic depth decay rule | |
| self.blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[i], | |
| norm_layer=norm_layer, | |
| init_values=init_values, | |
| cos_attn=cos_attn) for i in range(depth) | |
| ]) | |
| self.norm = norm_layer(embed_dim) | |
| self.head = nn.Linear( | |
| embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def get_num_layers(self): | |
| return len(self.blocks) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token'} | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear( | |
| self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward(self, x, return_token_num): | |
| for blk in self.blocks: | |
| if self.with_cp: | |
| x = cp.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| if return_token_num > 0: | |
| # only return the mask tokens predict pixels | |
| x = self.head(self.norm(x[:, -return_token_num:])) | |
| else: | |
| # [B, N, 3*16^2] | |
| x = self.head(self.norm(x)) | |
| return x | |
| class PretrainVisionTransformer(nn.Module): | |
| """ Vision Transformer with support for patch or hybrid CNN input stage | |
| """ | |
| def __init__( | |
| self, | |
| img_size=224, | |
| patch_size=16, | |
| encoder_in_chans=3, | |
| encoder_num_classes=0, | |
| encoder_embed_dim=768, | |
| encoder_depth=12, | |
| encoder_num_heads=12, | |
| decoder_num_classes=1536, # decoder_num_classes=768 | |
| decoder_embed_dim=512, | |
| decoder_depth=8, | |
| decoder_num_heads=8, | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0., | |
| norm_layer=nn.LayerNorm, | |
| init_values=0., | |
| use_learnable_pos_emb=False, | |
| tubelet_size=2, | |
| num_classes=0, # avoid the error from create_fn in timm | |
| in_chans=0, # avoid the error from create_fn in timm | |
| with_cp=False, | |
| all_frames=16, | |
| cos_attn=False, | |
| ): | |
| super().__init__() | |
| self.encoder = PretrainVisionTransformerEncoder( | |
| img_size=img_size, | |
| patch_size=patch_size, | |
| in_chans=encoder_in_chans, | |
| num_classes=encoder_num_classes, | |
| embed_dim=encoder_embed_dim, | |
| depth=encoder_depth, | |
| num_heads=encoder_num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop_rate=drop_rate, | |
| attn_drop_rate=attn_drop_rate, | |
| drop_path_rate=drop_path_rate, | |
| norm_layer=norm_layer, | |
| init_values=init_values, | |
| tubelet_size=tubelet_size, | |
| use_learnable_pos_emb=use_learnable_pos_emb, | |
| with_cp=with_cp, | |
| all_frames=all_frames, | |
| cos_attn=cos_attn) | |
| self.decoder = PretrainVisionTransformerDecoder( | |
| patch_size=patch_size, | |
| num_patches=self.encoder.patch_embed.num_patches, | |
| num_classes=decoder_num_classes, | |
| embed_dim=decoder_embed_dim, | |
| depth=decoder_depth, | |
| num_heads=decoder_num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop_rate=drop_rate, | |
| attn_drop_rate=attn_drop_rate, | |
| drop_path_rate=drop_path_rate, | |
| norm_layer=norm_layer, | |
| init_values=init_values, | |
| tubelet_size=tubelet_size, | |
| with_cp=with_cp, | |
| cos_attn=cos_attn) | |
| self.encoder_to_decoder = nn.Linear( | |
| encoder_embed_dim, decoder_embed_dim, bias=False) | |
| self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) | |
| self.pos_embed = get_sinusoid_encoding_table( | |
| self.encoder.patch_embed.num_patches, decoder_embed_dim) | |
| trunc_normal_(self.mask_token, std=.02) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def get_num_layers(self): | |
| return len(self.blocks) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token', 'mask_token'} | |
| def forward(self, x, mask, decode_mask=None): | |
| decode_vis = mask if decode_mask is None else ~decode_mask | |
| x_vis = self.encoder(x, mask) # [B, N_vis, C_e] | |
| x_vis = self.encoder_to_decoder(x_vis) # [B, N_vis, C_d] | |
| B, N_vis, C = x_vis.shape | |
| # we don't unshuffle the correct visible token order, | |
| # but shuffle the pos embedding accorddingly. | |
| expand_pos_embed = self.pos_embed.expand(B, -1, -1).type_as(x).to( | |
| x.device).clone().detach() | |
| pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C) | |
| pos_emd_mask = expand_pos_embed[decode_vis].reshape(B, -1, C) | |
| # [B, N, C_d] | |
| x_full = torch.cat( | |
| [x_vis + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1) | |
| # NOTE: if N_mask==0, the shape of x is [B, N_mask, 3 * 16 * 16] | |
| x = self.decoder(x_full, pos_emd_mask.shape[1]) | |
| return x | |
| def pretrain_videomae_small_patch16_224(pretrained=False, **kwargs): | |
| model = PretrainVisionTransformer( | |
| img_size=224, | |
| patch_size=16, | |
| encoder_embed_dim=384, | |
| encoder_depth=12, | |
| encoder_num_heads=6, | |
| encoder_num_classes=0, | |
| decoder_num_classes=1536, # 16 * 16 * 3 * 2 | |
| decoder_embed_dim=192, | |
| decoder_num_heads=3, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| **kwargs) | |
| model.default_cfg = _cfg() | |
| if pretrained: | |
| checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
| model.load_state_dict(checkpoint["model"]) | |
| return model | |
| def pretrain_videomae_base_patch16_224(pretrained=False, **kwargs): | |
| model = PretrainVisionTransformer( | |
| img_size=224, | |
| patch_size=16, | |
| encoder_embed_dim=768, | |
| encoder_depth=12, | |
| encoder_num_heads=12, | |
| encoder_num_classes=0, | |
| decoder_num_classes=1536, # 16 * 16 * 3 * 2 | |
| decoder_embed_dim=384, | |
| decoder_num_heads=6, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| **kwargs) | |
| model.default_cfg = _cfg() | |
| if pretrained: | |
| checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
| model.load_state_dict(checkpoint["model"]) | |
| return model | |
| def pretrain_videomae_large_patch16_224(pretrained=False, **kwargs): | |
| model = PretrainVisionTransformer( | |
| img_size=224, | |
| patch_size=16, | |
| encoder_embed_dim=1024, | |
| encoder_depth=24, | |
| encoder_num_heads=16, | |
| encoder_num_classes=0, | |
| decoder_num_classes=1536, # 16 * 16 * 3 * 2 | |
| decoder_embed_dim=512, | |
| decoder_num_heads=8, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| **kwargs) | |
| model.default_cfg = _cfg() | |
| if pretrained: | |
| checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
| model.load_state_dict(checkpoint["model"]) | |
| return model | |
| def pretrain_videomae_huge_patch16_224(pretrained=False, **kwargs): | |
| model = PretrainVisionTransformer( | |
| img_size=224, | |
| patch_size=16, | |
| encoder_embed_dim=1280, | |
| encoder_depth=32, | |
| encoder_num_heads=16, | |
| encoder_num_classes=0, | |
| decoder_num_classes=1536, # 16 * 16 * 3 * 2 | |
| decoder_embed_dim=512, | |
| decoder_num_heads=8, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| **kwargs) | |
| model.default_cfg = _cfg() | |
| if pretrained: | |
| checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
| model.load_state_dict(checkpoint["model"]) | |
| return model | |
| def pretrain_videomae_giant_patch14_224(pretrained=False, **kwargs): | |
| model = PretrainVisionTransformer( | |
| img_size=224, | |
| patch_size=14, | |
| encoder_embed_dim=1408, | |
| encoder_depth=40, | |
| encoder_num_heads=16, | |
| encoder_num_classes=0, | |
| decoder_num_classes=1176, # 14 * 14 * 3 * 2, | |
| decoder_embed_dim=512, | |
| decoder_num_heads=8, | |
| mlp_ratio=48 / 11, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| **kwargs) | |
| model.default_cfg = _cfg() | |
| if pretrained: | |
| checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
| model.load_state_dict(checkpoint["model"]) | |
| return model | |