Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.preprocessing import MinMaxScaler | |
from sklearn.metrics import mean_squared_error | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense, LSTM | |
import tensorflow as tf | |
import streamlit as st | |
def predict_stock(csv_file): | |
# Load and preprocess data | |
dataset = pd.read_csv(csv_file, usecols=[1], engine='python', encoding="big5") | |
dataset = dataset.values.astype('float32') | |
# Normalize the dataset | |
scaler = MinMaxScaler(feature_range=(0, 1)) | |
dataset = scaler.fit_transform(dataset) | |
# Split into train and test sets | |
train_size = int(len(dataset) * 0.8) | |
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] | |
# Create dataset function | |
def create_dataset(dataset, look_back=1): | |
dataX, dataY = [], [] | |
for i in range(len(dataset)-look_back-1): | |
a = dataset[i:(i+look_back), 0] | |
dataX.append(a) | |
dataY.append(dataset[i + look_back, 0]) | |
return np.array(dataX), np.array(dataY) | |
# Prepare data for LSTM | |
look_back = 1 | |
trainX, trainY = create_dataset(train, look_back) | |
testX, testY = create_dataset(test, look_back) | |
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) | |
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) | |
# Create and fit the LSTM network | |
model = Sequential() | |
model.add(LSTM(4, input_shape=(1, look_back))) | |
model.add(Dense(1)) | |
model.compile(loss='mean_squared_error', optimizer='adam') | |
model.fit(trainX, trainY, epochs=50, batch_size=1, verbose=0) | |
# Make predictions | |
trainPredict = model.predict(trainX) | |
testPredict = model.predict(testX) | |
# Invert predictions | |
trainPredict = scaler.inverse_transform(trainPredict) | |
trainY = scaler.inverse_transform([trainY]) | |
testPredict = scaler.inverse_transform(testPredict) | |
testY = scaler.inverse_transform([testY]) | |
# Calculate RMSE | |
trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) | |
testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0])) | |
# Prepare plot data | |
trainPredictPlot = np.empty_like(dataset) | |
trainPredictPlot[:, :] = np.nan | |
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict | |
testPredictPlot = np.empty_like(dataset) | |
testPredictPlot[:, :] = np.nan | |
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict | |
# Create plot | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
ax.plot(scaler.inverse_transform(dataset), label='Original Data', color='blue') | |
ax.plot(trainPredictPlot, label='Training Predictions', linestyle='--', color='green') | |
ax.plot(testPredictPlot, label='Test Predictions', linestyle='--', color='red') | |
ax.set_xlabel('Time') | |
ax.set_ylabel('Stock Price') | |
ax.set_title('Stock Price Prediction') | |
ax.legend() | |
ax.grid(True, linestyle='--', alpha=0.7) | |
return fig, trainScore, testScore | |
# Streamlit UI | |
st.set_page_config(page_title="Stock Price Prediction with LSTM", layout="wide") | |
st.title("Stock Price Prediction with LSTM") | |
st.write("Upload the 2330TW.csv file to predict stock prices using LSTM.") | |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv") | |
if uploaded_file is not None: | |
with st.spinner('Predicting...'): | |
fig, train_score, test_score = predict_stock(uploaded_file) | |
st.pyplot(fig) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric("Train Score (RMSE)", f"{train_score:.2f}") | |
with col2: | |
st.metric("Test Score (RMSE)", f"{test_score:.2f}") | |
st.markdown("---") | |
st.write("Created with ❤️ using Streamlit") |