JERNGOC commited on
Commit
6c60c14
·
verified ·
1 Parent(s): 8826943

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ from sklearn.preprocessing import MinMaxScaler
5
+ from sklearn.metrics import mean_squared_error
6
+ from tensorflow.keras.models import Sequential
7
+ from tensorflow.keras.layers import Dense, LSTM
8
+ import tensorflow as tf
9
+ import streamlit as st
10
+
11
+ def predict_stock(csv_file):
12
+ # Load and preprocess data
13
+ dataset = pd.read_csv(csv_file, usecols=[1], engine='python', encoding="big5")
14
+ dataset = dataset.values.astype('float32')
15
+
16
+ # Normalize the dataset
17
+ scaler = MinMaxScaler(feature_range=(0, 1))
18
+ dataset = scaler.fit_transform(dataset)
19
+
20
+ # Split into train and test sets
21
+ train_size = int(len(dataset) * 0.8)
22
+ train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
23
+
24
+ # Create dataset function
25
+ def create_dataset(dataset, look_back=1):
26
+ dataX, dataY = [], []
27
+ for i in range(len(dataset)-look_back-1):
28
+ a = dataset[i:(i+look_back), 0]
29
+ dataX.append(a)
30
+ dataY.append(dataset[i + look_back, 0])
31
+ return np.array(dataX), np.array(dataY)
32
+
33
+ # Prepare data for LSTM
34
+ look_back = 1
35
+ trainX, trainY = create_dataset(train, look_back)
36
+ testX, testY = create_dataset(test, look_back)
37
+ trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
38
+ testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
39
+
40
+ # Create and fit the LSTM network
41
+ model = Sequential()
42
+ model.add(LSTM(4, input_shape=(1, look_back)))
43
+ model.add(Dense(1))
44
+ model.compile(loss='mean_squared_error', optimizer='adam')
45
+ model.fit(trainX, trainY, epochs=50, batch_size=1, verbose=0)
46
+
47
+ # Make predictions
48
+ trainPredict = model.predict(trainX)
49
+ testPredict = model.predict(testX)
50
+
51
+ # Invert predictions
52
+ trainPredict = scaler.inverse_transform(trainPredict)
53
+ trainY = scaler.inverse_transform([trainY])
54
+ testPredict = scaler.inverse_transform(testPredict)
55
+ testY = scaler.inverse_transform([testY])
56
+
57
+ # Calculate RMSE
58
+ trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
59
+ testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
60
+
61
+ # Prepare plot data
62
+ trainPredictPlot = np.empty_like(dataset)
63
+ trainPredictPlot[:, :] = np.nan
64
+ trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
65
+ testPredictPlot = np.empty_like(dataset)
66
+ testPredictPlot[:, :] = np.nan
67
+ testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
68
+
69
+ # Create plot
70
+ fig, ax = plt.subplots(figsize=(12, 8))
71
+ ax.plot(scaler.inverse_transform(dataset), label='Original Data', color='blue')
72
+ ax.plot(trainPredictPlot, label='Training Predictions', linestyle='--', color='green')
73
+ ax.plot(testPredictPlot, label='Test Predictions', linestyle='--', color='red')
74
+ ax.set_xlabel('Time')
75
+ ax.set_ylabel('Stock Price')
76
+ ax.set_title('Stock Price Prediction')
77
+ ax.legend()
78
+ ax.grid(True, linestyle='--', alpha=0.7)
79
+
80
+ return fig, trainScore, testScore
81
+
82
+ # Streamlit UI
83
+ st.set_page_config(page_title="Stock Price Prediction with LSTM", layout="wide")
84
+
85
+ st.title("Stock Price Prediction with LSTM")
86
+ st.write("Upload the 2330TW.csv file to predict stock prices using LSTM.")
87
+
88
+ uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
89
+
90
+ if uploaded_file is not None:
91
+ with st.spinner('Predicting...'):
92
+ fig, train_score, test_score = predict_stock(uploaded_file)
93
+
94
+ st.pyplot(fig)
95
+
96
+ col1, col2 = st.columns(2)
97
+ with col1:
98
+ st.metric("Train Score (RMSE)", f"{train_score:.2f}")
99
+ with col2:
100
+ st.metric("Test Score (RMSE)", f"{test_score:.2f}")
101
+
102
+ st.markdown("---")
103
+ st.write("Created with ❤️ using Streamlit")