Spaces:
Runtime error
Runtime error
import os | |
import threading | |
import json | |
import modules.core as core | |
import modules.constants as constants | |
buffer = [] | |
outputs = [] | |
def worker(): | |
global buffer, outputs | |
import time | |
import shared | |
import random | |
import modules.default_pipeline as pipeline | |
import modules.path | |
import modules.patch | |
import fooocus_version | |
from modules.resolutions import get_resolution_string, resolutions | |
from modules.sdxl_styles import apply_style | |
from modules.private_logger import log | |
try: | |
async_gradio_app = shared.gradio_root | |
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' | |
if async_gradio_app.share: | |
flag += f''' or {async_gradio_app.share_url}''' | |
print(flag) | |
except Exception as e: | |
print(e) | |
def handler(task): | |
prompt, negative_prompt, style, performance, \ | |
resolution, image_number, image_seed, sharpness, sampler_name, scheduler, \ | |
custom_steps, custom_switch, cfg, \ | |
base_model_name, refiner_model_name, base_clip_skip, refiner_clip_skip, \ | |
l1, w1, l2, w2, l3, w3, l4, w4, l5, w5, save_metadata_json, save_metadata_png, \ | |
img2img_mode, img2img_start_step, img2img_denoise, gallery = task | |
loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)] | |
modules.patch.sharpness = sharpness | |
pipeline.refresh_base_model(base_model_name) | |
pipeline.refresh_refiner_model(refiner_model_name) | |
pipeline.refresh_loras(loras) | |
pipeline.clean_prompt_cond_caches() | |
p_txt, n_txt = apply_style(style, prompt, negative_prompt) | |
if performance == 'Speed': | |
steps = constants.STEPS_SPEED | |
switch = constants.SWITCH_SPEED | |
elif performance == 'Quality': | |
steps = constants.STEPS_QUALITY | |
switch = constants.SWITCH_QUALITY | |
else: | |
steps = custom_steps | |
switch = round(custom_steps * custom_switch) | |
width, height = resolutions[resolution] | |
results = [] | |
metadata_strings = [] | |
seed = image_seed | |
max_seed = 2**63 - 1 | |
if not isinstance(seed, int): | |
seed = random.randint(0, max_seed) | |
if seed < 0: | |
seed = - seed | |
seed = seed % max_seed | |
all_steps = steps * image_number | |
def callback(step, x0, x, total_steps, y): | |
done_steps = i * steps + step | |
outputs.append(['preview', ( | |
int(100.0 * float(done_steps) / float(all_steps)), | |
f'Step {step}/{total_steps} in the {i}-th Sampling', | |
y)]) | |
gallery_size = len(gallery) | |
for i in range(image_number): | |
if img2img_mode and gallery_size > 0: | |
start_step = round(steps * img2img_start_step) | |
denoise = img2img_denoise | |
gallery_entry = gallery[i % gallery_size] | |
input_image_path = gallery_entry['name'] | |
else: | |
start_step = 0 | |
denoise = None | |
input_image_path = None | |
imgs = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, sampler_name, scheduler, | |
cfg, base_clip_skip, refiner_clip_skip, input_image_path, start_step, denoise, callback=callback) | |
metadata = { | |
'prompt': prompt, 'negative_prompt': negative_prompt, 'style': style, | |
'seed': seed, 'width': width, 'height': height, 'p_txt': p_txt, 'n_txt': n_txt, | |
'sampler': sampler_name, 'scheduler': scheduler, 'performance': performance, | |
'steps': steps, 'switch': switch, 'sharpness': sharpness, 'cfg': cfg, | |
'base_clip_skip': base_clip_skip, 'refiner_clip_skip': refiner_clip_skip, | |
'base_model': base_model_name, 'refiner_model': refiner_model_name, | |
'l1': l1, 'w1': w1, 'l2': l2, 'w2': w2, 'l3': l3, 'w3': w3, | |
'l4': l4, 'w4': w4, 'l5': l5, 'w5': w5, 'img2img': img2img_mode, | |
'start_step': start_step, 'denoise': denoise, 'input_image': None if input_image_path == None else os.path.basename(input_image_path), | |
'software': fooocus_version.full_version | |
} | |
metadata_string = json.dumps(metadata, ensure_ascii=False) | |
metadata_strings.append(metadata_string) | |
for x in imgs: | |
d = [ | |
('Prompt', prompt), | |
('Negative Prompt', negative_prompt), | |
('Style', style), | |
('Seed', seed), | |
('Resolution', get_resolution_string(width, height)), | |
('Performance', str((performance, steps, switch))), | |
('Sampler & Scheduler', str((sampler_name, scheduler))), | |
('Sharpness', sharpness), | |
('CFG & CLIP Skips', str((cfg, base_clip_skip, refiner_clip_skip))), | |
('Base Model', base_model_name), | |
('Refiner Model', refiner_model_name), | |
('Image-2-Image', (img2img_mode, start_step, denoise, metadata['input_image'])) | |
] | |
for n, w in loras: | |
if n != 'None': | |
d.append((f'LoRA [{n}] weight', w)) | |
d.append(('Software', fooocus_version.full_version)) | |
log(x, d, metadata_string, save_metadata_json, save_metadata_png) | |
seed += 1 | |
results += imgs | |
outputs.append(['results', results]) | |
outputs.append(['metadatas', metadata_strings]) | |
return | |
while True: | |
time.sleep(0.01) | |
if len(buffer) > 0: | |
task = buffer.pop(0) | |
handler(task) | |
pass | |
threading.Thread(target=worker, daemon=True).start() | |