import os import threading import json import modules.core as core import modules.constants as constants buffer = [] outputs = [] def worker(): global buffer, outputs import time import shared import random import modules.default_pipeline as pipeline import modules.path import modules.patch import fooocus_version from modules.resolutions import get_resolution_string, resolutions from modules.sdxl_styles import apply_style from modules.private_logger import log try: async_gradio_app = shared.gradio_root flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' if async_gradio_app.share: flag += f''' or {async_gradio_app.share_url}''' print(flag) except Exception as e: print(e) def handler(task): prompt, negative_prompt, style, performance, \ resolution, image_number, image_seed, sharpness, sampler_name, scheduler, \ custom_steps, custom_switch, cfg, \ base_model_name, refiner_model_name, base_clip_skip, refiner_clip_skip, \ l1, w1, l2, w2, l3, w3, l4, w4, l5, w5, save_metadata_json, save_metadata_png, \ img2img_mode, img2img_start_step, img2img_denoise, gallery = task loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)] modules.patch.sharpness = sharpness pipeline.refresh_base_model(base_model_name) pipeline.refresh_refiner_model(refiner_model_name) pipeline.refresh_loras(loras) pipeline.clean_prompt_cond_caches() p_txt, n_txt = apply_style(style, prompt, negative_prompt) if performance == 'Speed': steps = constants.STEPS_SPEED switch = constants.SWITCH_SPEED elif performance == 'Quality': steps = constants.STEPS_QUALITY switch = constants.SWITCH_QUALITY else: steps = custom_steps switch = round(custom_steps * custom_switch) width, height = resolutions[resolution] results = [] metadata_strings = [] seed = image_seed max_seed = 2**63 - 1 if not isinstance(seed, int): seed = random.randint(0, max_seed) if seed < 0: seed = - seed seed = seed % max_seed all_steps = steps * image_number def callback(step, x0, x, total_steps, y): done_steps = i * steps + step outputs.append(['preview', ( int(100.0 * float(done_steps) / float(all_steps)), f'Step {step}/{total_steps} in the {i}-th Sampling', y)]) gallery_size = len(gallery) for i in range(image_number): if img2img_mode and gallery_size > 0: start_step = round(steps * img2img_start_step) denoise = img2img_denoise gallery_entry = gallery[i % gallery_size] input_image_path = gallery_entry['name'] else: start_step = 0 denoise = None input_image_path = None imgs = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, sampler_name, scheduler, cfg, base_clip_skip, refiner_clip_skip, input_image_path, start_step, denoise, callback=callback) metadata = { 'prompt': prompt, 'negative_prompt': negative_prompt, 'style': style, 'seed': seed, 'width': width, 'height': height, 'p_txt': p_txt, 'n_txt': n_txt, 'sampler': sampler_name, 'scheduler': scheduler, 'performance': performance, 'steps': steps, 'switch': switch, 'sharpness': sharpness, 'cfg': cfg, 'base_clip_skip': base_clip_skip, 'refiner_clip_skip': refiner_clip_skip, 'base_model': base_model_name, 'refiner_model': refiner_model_name, 'l1': l1, 'w1': w1, 'l2': l2, 'w2': w2, 'l3': l3, 'w3': w3, 'l4': l4, 'w4': w4, 'l5': l5, 'w5': w5, 'img2img': img2img_mode, 'start_step': start_step, 'denoise': denoise, 'input_image': None if input_image_path == None else os.path.basename(input_image_path), 'software': fooocus_version.full_version } metadata_string = json.dumps(metadata, ensure_ascii=False) metadata_strings.append(metadata_string) for x in imgs: d = [ ('Prompt', prompt), ('Negative Prompt', negative_prompt), ('Style', style), ('Seed', seed), ('Resolution', get_resolution_string(width, height)), ('Performance', str((performance, steps, switch))), ('Sampler & Scheduler', str((sampler_name, scheduler))), ('Sharpness', sharpness), ('CFG & CLIP Skips', str((cfg, base_clip_skip, refiner_clip_skip))), ('Base Model', base_model_name), ('Refiner Model', refiner_model_name), ('Image-2-Image', (img2img_mode, start_step, denoise, metadata['input_image'])) ] for n, w in loras: if n != 'None': d.append((f'LoRA [{n}] weight', w)) d.append(('Software', fooocus_version.full_version)) log(x, d, metadata_string, save_metadata_json, save_metadata_png) seed += 1 results += imgs outputs.append(['results', results]) outputs.append(['metadatas', metadata_strings]) return while True: time.sleep(0.01) if len(buffer) > 0: task = buffer.pop(0) handler(task) pass threading.Thread(target=worker, daemon=True).start()