HSMR / lib /modeling /optim /skelify_refiner.py
IsshikiHugh's picture
feat: CPU demo
5ac1897
from lib.kits.basic import *
import traceback
from tqdm import tqdm
from lib.body_models.common import make_SKEL
from lib.body_models.skel_wrapper import SKELWrapper, SKELOutput
from lib.body_models.abstract_skeletons import Skeleton_OpenPose25
from lib.utils.data import to_tensor, to_list
from lib.utils.camera import perspective_projection
from lib.utils.media import draw_kp2d_on_img, annotate_img, splice_img
from lib.utils.vis import render_mesh_overlay_img
from lib.modeling.losses import compute_poses_angle_prior_loss
from .skelify.utils import get_kp_active_j_masks
def compute_rel_change(prev_val: float, curr_val: float) -> float:
'''
Compute the relative change between two values.
Copied: from https://github.com/vchoutas/smplify-x
### Args:
- prev_val: float
- curr_val: float
### Returns:
- float
'''
return np.abs(prev_val - curr_val) / max([np.abs(prev_val), np.abs(curr_val), 1])
def gmof(x, sigma):
'''
Geman-McClure error function, to be used as a robust loss function.
'''
x_squared = x ** 2
sigma_squared = sigma ** 2
return (sigma_squared * x_squared) / (sigma_squared + x_squared)
class SKELifyRefiner():
def __init__(self, cfg, name='SKELify', tb_logger=None, device='cuda:0'):
self.cfg = cfg
self.name = name
self.eq_thre = cfg.early_quit_thresholds
self.tb_logger = tb_logger
self.device = device
self.skel_model = instantiate(cfg.skel_model).to(device)
# Dirty implementation for visualization.
self.render_frames = []
def __call__(
self,
gt_kp2d : Union[torch.Tensor, np.ndarray],
init_poses : Union[torch.Tensor, np.ndarray],
init_betas : Union[torch.Tensor, np.ndarray],
init_cam_t : Union[torch.Tensor, np.ndarray],
img_patch : Optional[np.ndarray] = None,
**kwargs
):
'''
Use optimization to fit the SKEL parameters to the 2D keypoints.
### Args:
- gt_kp2d : torch.Tensor or np.ndarray, (B, J, 3)
- The last three dim means [x, y, conf].
- The 2D keypoints to fit, they are defined in [-0.5, 0.5], zero-centered space.
- init_poses : torch.Tensor or np.ndarray, (B, 46)
- init_betas : torch.Tensor or np.ndarray, (B, 10)
- init_cam_t : torch.Tensor or np.ndarray, (B, 3)
- img_patch : np.ndarray or None, (B, H, W, 3)
- The image patch for visualization. H, W are defined in normalized bounding box space.
- If None, the visualization will simply use a black image.
### Returns:
- TODO:
'''
# ⛩️ Prepare the input data.
gt_kp2d = to_tensor(gt_kp2d, device=self.device).detach().float().clone() # (B, J, 3)
init_poses = to_tensor(init_poses, device=self.device).detach().float().clone() # (B, 46)
init_betas = to_tensor(init_betas, device=self.device).detach().float().clone() # (B, 10)
init_cam_t = to_tensor(init_cam_t, device=self.device).detach().float().clone() # (B, 3)
inputs = {
'poses_orient': init_poses[:, :3], # (B, 3)
'poses_body' : init_poses[:, 3:], # (B, 43)
'betas' : init_betas, # (B, 10)
'cam_t' : init_cam_t, # (B, 3)
}
focal_length = np.ones(2) * self.cfg.focal_length / self.cfg.img_patch_size
focal_length = focal_length.reshape(1, 2).repeat(inputs['cam_t'].shape[0], 1)
# ⛩️ Optimization phases, controlled by config file.
prev_phase_steps = 0 # accumulate the steps are *supposed* to be done in the previous phases
for phase_id, phase_name in enumerate(self.cfg.phases):
phase_cfg = self.cfg.phases[phase_name]
# Preparation.
optim_params = []
for k in inputs.keys():
if k in phase_cfg.params_keys:
inputs[k].requires_grad = True
optim_params.append(inputs[k]) # (B, D)
else:
inputs[k].requires_grad = False
optimizer = instantiate(phase_cfg.optimizer, optim_params, _recursive_=True)
def closure():
optimizer.zero_grad()
# Data preparation.
cam_t = inputs['cam_t']
skel_params = {
'poses' : torch.cat([inputs['poses_orient'], inputs['poses_body']], dim=-1), # (B, 46)
'betas' : inputs['betas'], # (B, 10)
'skelmesh' : False,
}
# Optimize steps.
skel_output = self.skel_model(**skel_params)
pd_kp2d = perspective_projection(
points = to_tensor(skel_output.joints, device=self.device),
translation = to_tensor(cam_t, device=self.device),
focal_length = to_tensor(focal_length, device=self.device),
)
loss, losses = self._compute_losses(
act_losses = phase_cfg.losses,
act_parts = phase_cfg.get('parts', 'all'),
gt_kp2d = gt_kp2d,
pd_kp2d = pd_kp2d,
pd_params = skel_params,
**phase_cfg.get('weights', {}),
)
# For visualize the optimization process.
_conf = gt_kp2d[..., 2] # (B, J)
metric = torch.sum((pd_kp2d - gt_kp2d[..., :2]) ** 2, dim=-1) * _conf # (B, J)
metric = metric.sum(dim=-1) / (torch.sum(_conf, dim=-1) + 1e-6) # (B,)
# Store logging data.
if self.tb_logger is not None:
log_data.update({
'losses' : losses,
'pd_kp2d' : pd_kp2d[:self.cfg.logger.samples_per_record].detach().clone(),
'pd_verts' : skel_output.skin_verts[:self.cfg.logger.samples_per_record].detach().clone(),
'cam_t' : cam_t[:self.cfg.logger.samples_per_record].detach().clone(),
'metric' : metric[:self.cfg.logger.samples_per_record].detach().clone(),
'optim_betas' : inputs['betas'][:self.cfg.logger.samples_per_record].detach().clone(),
})
loss.backward()
return loss.item()
# Optimization loop.
prev_loss = None
with tqdm(range(phase_cfg.max_loop)) as bar:
bar.set_description(f'[{phase_name}] Loss: ???')
for i in bar:
log_data = {}
curr_loss = optimizer.step(closure)
# Logging.
if self.tb_logger is not None:
log_data.update({
'img_patch' : img_patch[:self.cfg.logger.samples_per_record] if img_patch is not None else None,
'gt_kp2d' : gt_kp2d[:self.cfg.logger.samples_per_record].detach().clone(),
})
self._tb_log(prev_phase_steps + i, log_data)
# self._tb_log_for_report(prev_phase_steps + i, log_data)
bar.set_description(f'[{phase_name}] Loss: {curr_loss:.4f}')
if self._can_early_quit(optim_params, prev_loss, curr_loss):
break
prev_loss = curr_loss
prev_phase_steps += phase_cfg.max_loop
# ⛩️ Prepare the output data.
outputs = {
'poses': torch.cat([inputs['poses_orient'], inputs['poses_body']], dim=-1).detach().clone(), # (B, 46)
'betas': inputs['betas'].detach().clone(), # (B, 10)
'cam_t': inputs['cam_t'].detach().clone(), # (B, 3)
}
return outputs
def _compute_losses(
self,
act_losses : List[str],
act_parts : List[str],
gt_kp2d : torch.Tensor,
pd_kp2d : torch.Tensor,
pd_params : Dict,
robust_sigma : float = 100,
shape_prior_weight : float = 5,
angle_prior_weight : float = 15.2,
*args, **kwargs,
):
'''
Compute the weighted losses according to the config file.
Follow: https://github.com/nkolot/SPIN/blob/2476c436013055be5cb3905e4e4ecfa86966fac3/smplify/losses.py#L26-L58s
'''
B = len(gt_kp2d)
act_j_masks = get_kp_active_j_masks(act_parts, device=gt_kp2d.device) # (44,)
# Reproject the 3D keypoints to image and compare the L2 error with the g.t. 2D keypoints.
kp_conf = gt_kp2d[..., 2] # (B, J)
gt_kp2d = gt_kp2d[..., :2] # (B, J, 2)
reproj_err = gmof(pd_kp2d - gt_kp2d, robust_sigma) # (B, J, 2)
reproj_loss = ((kp_conf ** 2) * reproj_err.sum(dim=-1) * act_j_masks[None]).sum(-1) # (B,)
# Regularize the shape parameters.
shape_prior_loss = (shape_prior_weight ** 2) * (pd_params['betas'] ** 2).sum(dim=-1) # (B,)
# Use the SKEL angle prior knowledge (e.g., rotation limitation) to regularize the optimization process.
# TODO: Is that necessary?
angle_prior_loss = (angle_prior_weight ** 2) * compute_poses_angle_prior_loss(pd_params['poses']).mean() # (,)
losses = {
'reprojection' : reproj_loss.mean(), # (,)
'shape_prior' : shape_prior_loss.mean(), # (,)
'angle_prior' : angle_prior_loss, # (,)
}
loss = torch.tensor(0., device=gt_kp2d.device)
for k in act_losses:
loss += losses[k]
losses = {k: v.detach() for k, v in losses.items()}
losses['sum'] = loss.detach() # (,)
return loss, losses
def _can_early_quit(self, opt_params, prev_loss, curr_loss):
''' Judge whether to early quit the optimization process. If yes, return True, otherwise False.'''
if self.cfg.early_quit_thresholds is None:
# Never early quit.
return False
# Relative change test.
if prev_loss is not None:
loss_rel_change = compute_rel_change(prev_loss, curr_loss)
if loss_rel_change < self.cfg.early_quit_thresholds.rel:
get_logger().info(f'Early quit due to relative change: {loss_rel_change:.4f} = rel({prev_loss}, {curr_loss})')
return True
# Absolute change test.
if all([
torch.abs(param.grad.max()).item() < self.cfg.early_quit_thresholds.abs
for param in opt_params if param.grad is not None
]):
get_logger().info(f'Early quit due to absolute change.')
return True
return False
@rank_zero_only
def _tb_log(self, step_cnt:int, log_data:Dict, *args, **kwargs):
''' Write the logging information to the TensorBoard. '''
if step_cnt != 0 and (step_cnt + 1) % self.cfg.logger.interval != 0:
return
summary_writer = self.tb_logger.experiment
# Save losses.
for loss_name, loss_val in log_data['losses'].items():
summary_writer.add_scalar(f'skelify/{loss_name}', loss_val.detach().item(), step_cnt)
# Visualization of the optimization process. TODO: Maybe we can make this more elegant.
if log_data['img_patch'] is None:
log_data['img_patch'] = [np.zeros((self.cfg.img_patch_size, self.cfg.img_patch_size, 3), dtype=np.uint8)] \
* len(log_data['gt_kp2d'])
if len(self.render_frames) < 1:
self.init_v = log_data['pd_verts']
self.init_metric = log_data['metric']
self.init_ct = log_data['cam_t']
# Overlay the skin mesh of the results on the original image.
try:
imgs_spliced = []
for i, img_patch in enumerate(log_data['img_patch']):
metric = log_data['metric'][i].item()
img_with_init = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = self.init_v[i],
K4 = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
img = img_patch,
Rt = [torch.eye(3), self.init_ct[i]],
mesh_color = 'pink',
)
img_with_init = annotate_img(img_with_init, 'init')
img_with_init = annotate_img(img_with_init, f'Quality: {self.init_metric[i].item()*1000:.3f}/1e3', pos='tl')
img_with_mesh = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = log_data['pd_verts'][i],
K4 = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
img = img_patch,
Rt = [torch.eye(3), log_data['cam_t'][i]],
mesh_color = 'pink',
)
img_with_mesh = annotate_img(img_with_mesh, 'pd_mesh')
betas_max = log_data['optim_betas'][i].abs().max().item()
img_with_mesh = annotate_img(img_with_mesh, f'Quality: {metric*1000:.3f}/1e3\nbetas_max: {betas_max:.3f}', pos='tl')
img_patch_raw = annotate_img(img_patch, 'raw')
log_data['gt_kp2d'][i][..., :2] = (log_data['gt_kp2d'][i][..., :2] + 0.5) * self.cfg.img_patch_size
img_with_gt = annotate_img(img_patch, 'gt_kp2d')
img_with_gt = draw_kp2d_on_img(
img_with_gt,
log_data['gt_kp2d'][i],
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
log_data['pd_kp2d'][i] = (log_data['pd_kp2d'][i] + 0.5) * self.cfg.img_patch_size
img_with_pd = annotate_img(img_patch, 'pd_kp2d')
img_with_pd = draw_kp2d_on_img(
img_with_pd,
log_data['pd_kp2d'][i],
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
img_spliced = splice_img(
img_grids = [img_patch_raw, img_with_gt, img_with_pd, img_with_init, img_with_mesh],
# grid_ids = [[0, 1, 2, 3, 4]],
grid_ids = [[1, 2, 3, 4]],
)
imgs_spliced.append(img_spliced)
img_final = splice_img(imgs_spliced, grid_ids=[[i] for i in range(len(log_data['img_patch']))])
img_final = to_tensor(img_final, device=None).permute(2, 0, 1) # (3, H, W)
summary_writer.add_image('skelify/visualization', img_final, step_cnt)
self.render_frames.append(img_final)
except Exception as e:
get_logger().error(f'Failed to visualize the optimization process: {e}')
# traceback.print_exc()
@rank_zero_only
def _tb_log_for_report(self, step_cnt:int, log_data:Dict, *args, **kwargs):
''' Write the logging information to the TensorBoard. '''
get_logger().warning(f'This logging functions is just for presentation.')
if len(self.render_frames) < 1:
self.init_v = log_data['pd_verts']
self.init_ct = log_data['cam_t']
if step_cnt != 0 and (step_cnt + 1) % self.cfg.logger.interval != 0:
return
summary_writer = self.tb_logger.experiment
# Save losses.
for loss_name, loss_val in log_data['losses'].items():
summary_writer.add_scalar(f'losses/{loss_name}', loss_val.detach().item(), step_cnt)
# Visualization of the optimization process. TODO: Maybe we can make this more elegant.
if log_data['img_patch'] is None:
log_data['img_patch'] = [np.zeros((self.cfg.img_patch_size, self.cfg.img_patch_size, 3), dtype=np.uint8)] \
* len(log_data['gt_kp2d'])
# Overlay the skin mesh of the results on the original image.
try:
imgs_spliced = []
for i, img_patch in enumerate(log_data['img_patch']):
img_with_init = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = self.init_v[i],
K4 = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
img = img_patch,
Rt = [torch.eye(3), self.init_ct[i]],
mesh_color = 'pink',
)
img_with_init = annotate_img(img_with_init, 'init')
img_with_mesh = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = log_data['pd_verts'][i],
K4 = [self.cfg.focal_length, self.cfg.focal_length, 0, 0],
img = img_patch,
Rt = [torch.eye(3), log_data['cam_t'][i]],
mesh_color = 'pink',
)
img_with_mesh = annotate_img(img_with_mesh, 'pd_mesh')
img_patch_raw = annotate_img(img_patch, 'raw')
log_data['gt_kp2d'][i][..., :2] = (log_data['gt_kp2d'][i][..., :2] + 0.5) * self.cfg.img_patch_size
img_with_gt = annotate_img(img_patch, 'gt_kp2d')
img_with_gt = draw_kp2d_on_img(
img_with_gt,
log_data['gt_kp2d'][i],
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
img_spliced = splice_img([img_patch_raw, img_with_gt, img_with_init, img_with_mesh], grid_ids=[[0, 1, 2, 3]])
imgs_spliced.append(img_spliced)
img_final = splice_img(imgs_spliced, grid_ids=[[i] for i in range(len(log_data['img_patch']))])
img_final = to_tensor(img_final, device=None).permute(2, 0, 1)
summary_writer.add_image('visualization', img_final, step_cnt)
self.render_frames.append(img_final)
except Exception as e:
get_logger().error(f'Failed to visualize the optimization process: {e}')
traceback.print_exc()