multimodalart HF staff commited on
Commit
07afe68
·
verified ·
1 Parent(s): 14c6590

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -94
app.py CHANGED
@@ -1,154 +1,159 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  prompt,
27
- negative_prompt,
28
  seed,
29
  randomize_seed,
30
  width,
31
  height,
32
- guidance_scale,
33
- num_inference_steps,
34
  progress=gr.Progress(track_tqdm=True),
35
  ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
 
 
 
 
 
 
 
 
 
 
42
  prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
  width=width,
47
  height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
 
 
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
95
  maximum=MAX_SEED,
96
  step=1,
97
- value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
  inputs=[
 
141
  prompt,
142
- negative_prompt,
143
  seed,
144
  randomize_seed,
145
  width,
146
  height,
147
- guidance_scale,
148
- num_inference_steps,
149
  ],
150
  outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
 
4
  import torch
5
+ from PIL import Image
6
+ import os
7
+ from pipeline_flux_ipa import FluxPipeline
8
+ from transformer_flux import FluxTransformer2DModel
9
+ from attention_processor import IPAFluxAttnProcessor2_0
10
+ from transformers import AutoProcessor, SiglipVisionModel
11
+ from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
12
+ from huggingface_hub import hf_hub_download
13
+ import spaces
14
+
15
+ # Constants
 
16
  MAX_SEED = np.iinfo(np.int32).max
17
  MAX_IMAGE_SIZE = 1024
18
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
19
+
20
+ image_encoder_path = "google/siglip-so400m-patch14-384"
21
+ ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
22
+
23
+ transformer = FluxTransformer2DModel.from_pretrained(
24
+ "black-forest-labs/FLUX.1-dev",
25
+ subfolder="transformer",
26
+ torch_dtype=torch.bfloat16
27
+ )
28
+ pipe = FluxPipeline.from_pretrained(
29
+ "black-forest-labs/FLUX.1-dev",
30
+ transformer=transformer,
31
+ torch_dtype=torch.bfloat16
32
+ )
33
+ ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
34
+
35
+
36
+ def resize_img(image, max_size=1024):
37
+ width, height = image.size
38
+ scaling_factor = min(max_size / width, max_size / height)
39
+ new_width = int(width * scaling_factor)
40
+ new_height = int(height * scaling_factor)
41
+ return image.resize((new_width, new_height), Image.LANCZOS)
42
+
43
+ @spaces.GPU
44
+ def process_image(
45
+ image,
46
  prompt,
47
+ scale,
48
  seed,
49
  randomize_seed,
50
  width,
51
  height,
 
 
52
  progress=gr.Progress(track_tqdm=True),
53
  ):
54
  if randomize_seed:
55
  seed = random.randint(0, MAX_SEED)
56
+
57
+ if image is None:
58
+ return None, seed
59
+
60
+ # Convert to PIL Image if needed
61
+ if not isinstance(image, Image.Image):
62
+ image = Image.fromarray(image)
63
+
64
+ # Resize image
65
+ image = resize_img(image)
66
+
67
+ # Generate the image
68
+ result = ip_model.generate(
69
+ pil_image=image,
70
  prompt=prompt,
71
+ scale=scale,
 
 
72
  width=width,
73
  height=height,
74
+ seed=seed
75
+ )
76
+
77
+ return result[0], seed
 
 
 
 
 
 
 
78
 
79
+ # UI CSS
80
  css = """
81
  #col-container {
82
  margin: 0 auto;
83
+ max-width: 960px;
84
  }
85
  """
86
 
87
+ # Create the Gradio interface
88
  with gr.Blocks(css=css) as demo:
89
  with gr.Column(elem_id="col-container"):
90
+ gr.Markdown("# Image Processing Model")
91
+
92
  with gr.Row():
93
+ with gr.Column():
94
+ input_image = gr.Image(
95
+ label="Input Image",
96
+ type="pil"
97
+ )
98
+ prompt = gr.Text(
99
+ label="Prompt",
100
+ max_lines=1,
101
+ placeholder="Enter your prompt",
102
+ )
103
+ run_button = gr.Button("Process", variant="primary")
104
+
105
+ with gr.Column():
106
+ result = gr.Image(label="Result")
107
+
108
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
109
  seed = gr.Slider(
110
  label="Seed",
111
  minimum=0,
112
  maximum=MAX_SEED,
113
  step=1,
114
+ value=42,
115
  )
116
+
117
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
118
+
119
  with gr.Row():
120
  width = gr.Slider(
121
  label="Width",
122
  minimum=256,
123
  maximum=MAX_IMAGE_SIZE,
124
  step=32,
125
+ value=960,
126
  )
127
+
128
  height = gr.Slider(
129
  label="Height",
130
  minimum=256,
131
  maximum=MAX_IMAGE_SIZE,
132
  step=32,
133
+ value=1280,
 
 
 
 
 
 
 
 
 
134
  )
135
+
136
+ scale = gr.Slider(
137
+ label="Scale",
138
+ minimum=0.0,
139
+ maximum=1.0,
140
+ step=0.1,
141
+ value=0.7,
142
+ )
143
+
144
+ run_button.click(
145
+ fn=process_image,
 
 
146
  inputs=[
147
+ input_image,
148
  prompt,
149
+ scale,
150
  seed,
151
  randomize_seed,
152
  width,
153
  height,
 
 
154
  ],
155
  outputs=[result, seed],
156
  )
157
 
158
  if __name__ == "__main__":
159
+ demo.launch()