Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,159 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
prompt,
|
27 |
-
|
28 |
seed,
|
29 |
randomize_seed,
|
30 |
width,
|
31 |
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
prompt=prompt,
|
43 |
-
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
width=width,
|
47 |
height=height,
|
48 |
-
|
49 |
-
)
|
50 |
-
|
51 |
-
return
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
|
|
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
|
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown("
|
70 |
-
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
seed = gr.Slider(
|
93 |
label="Seed",
|
94 |
minimum=0,
|
95 |
maximum=MAX_SEED,
|
96 |
step=1,
|
97 |
-
value=
|
98 |
)
|
99 |
-
|
100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=
|
109 |
)
|
110 |
-
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
inputs=[
|
|
|
141 |
prompt,
|
142 |
-
|
143 |
seed,
|
144 |
randomize_seed,
|
145 |
width,
|
146 |
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
],
|
150 |
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
+
from pipeline_flux_ipa import FluxPipeline
|
8 |
+
from transformer_flux import FluxTransformer2DModel
|
9 |
+
from attention_processor import IPAFluxAttnProcessor2_0
|
10 |
+
from transformers import AutoProcessor, SiglipVisionModel
|
11 |
+
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
import spaces
|
14 |
+
|
15 |
+
# Constants
|
|
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 1024
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
21 |
+
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
|
22 |
+
|
23 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
24 |
+
"black-forest-labs/FLUX.1-dev",
|
25 |
+
subfolder="transformer",
|
26 |
+
torch_dtype=torch.bfloat16
|
27 |
+
)
|
28 |
+
pipe = FluxPipeline.from_pretrained(
|
29 |
+
"black-forest-labs/FLUX.1-dev",
|
30 |
+
transformer=transformer,
|
31 |
+
torch_dtype=torch.bfloat16
|
32 |
+
)
|
33 |
+
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
|
34 |
+
|
35 |
+
|
36 |
+
def resize_img(image, max_size=1024):
|
37 |
+
width, height = image.size
|
38 |
+
scaling_factor = min(max_size / width, max_size / height)
|
39 |
+
new_width = int(width * scaling_factor)
|
40 |
+
new_height = int(height * scaling_factor)
|
41 |
+
return image.resize((new_width, new_height), Image.LANCZOS)
|
42 |
+
|
43 |
+
@spaces.GPU
|
44 |
+
def process_image(
|
45 |
+
image,
|
46 |
prompt,
|
47 |
+
scale,
|
48 |
seed,
|
49 |
randomize_seed,
|
50 |
width,
|
51 |
height,
|
|
|
|
|
52 |
progress=gr.Progress(track_tqdm=True),
|
53 |
):
|
54 |
if randomize_seed:
|
55 |
seed = random.randint(0, MAX_SEED)
|
56 |
+
|
57 |
+
if image is None:
|
58 |
+
return None, seed
|
59 |
+
|
60 |
+
# Convert to PIL Image if needed
|
61 |
+
if not isinstance(image, Image.Image):
|
62 |
+
image = Image.fromarray(image)
|
63 |
+
|
64 |
+
# Resize image
|
65 |
+
image = resize_img(image)
|
66 |
+
|
67 |
+
# Generate the image
|
68 |
+
result = ip_model.generate(
|
69 |
+
pil_image=image,
|
70 |
prompt=prompt,
|
71 |
+
scale=scale,
|
|
|
|
|
72 |
width=width,
|
73 |
height=height,
|
74 |
+
seed=seed
|
75 |
+
)
|
76 |
+
|
77 |
+
return result[0], seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# UI CSS
|
80 |
css = """
|
81 |
#col-container {
|
82 |
margin: 0 auto;
|
83 |
+
max-width: 960px;
|
84 |
}
|
85 |
"""
|
86 |
|
87 |
+
# Create the Gradio interface
|
88 |
with gr.Blocks(css=css) as demo:
|
89 |
with gr.Column(elem_id="col-container"):
|
90 |
+
gr.Markdown("# Image Processing Model")
|
91 |
+
|
92 |
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
input_image = gr.Image(
|
95 |
+
label="Input Image",
|
96 |
+
type="pil"
|
97 |
+
)
|
98 |
+
prompt = gr.Text(
|
99 |
+
label="Prompt",
|
100 |
+
max_lines=1,
|
101 |
+
placeholder="Enter your prompt",
|
102 |
+
)
|
103 |
+
run_button = gr.Button("Process", variant="primary")
|
104 |
+
|
105 |
+
with gr.Column():
|
106 |
+
result = gr.Image(label="Result")
|
107 |
+
|
108 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
seed = gr.Slider(
|
110 |
label="Seed",
|
111 |
minimum=0,
|
112 |
maximum=MAX_SEED,
|
113 |
step=1,
|
114 |
+
value=42,
|
115 |
)
|
116 |
+
|
117 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
118 |
+
|
119 |
with gr.Row():
|
120 |
width = gr.Slider(
|
121 |
label="Width",
|
122 |
minimum=256,
|
123 |
maximum=MAX_IMAGE_SIZE,
|
124 |
step=32,
|
125 |
+
value=960,
|
126 |
)
|
127 |
+
|
128 |
height = gr.Slider(
|
129 |
label="Height",
|
130 |
minimum=256,
|
131 |
maximum=MAX_IMAGE_SIZE,
|
132 |
step=32,
|
133 |
+
value=1280,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
+
|
136 |
+
scale = gr.Slider(
|
137 |
+
label="Scale",
|
138 |
+
minimum=0.0,
|
139 |
+
maximum=1.0,
|
140 |
+
step=0.1,
|
141 |
+
value=0.7,
|
142 |
+
)
|
143 |
+
|
144 |
+
run_button.click(
|
145 |
+
fn=process_image,
|
|
|
|
|
146 |
inputs=[
|
147 |
+
input_image,
|
148 |
prompt,
|
149 |
+
scale,
|
150 |
seed,
|
151 |
randomize_seed,
|
152 |
width,
|
153 |
height,
|
|
|
|
|
154 |
],
|
155 |
outputs=[result, seed],
|
156 |
)
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
+
demo.launch()
|