Ifeanyi's picture
Update app.R
5f02390 verified
raw
history blame
19 kB
library(shiny)
library(shinyalert)
library(shinythemes)
library(shinydisconnect)
library(shinycssloaders)
library(shinyWidgets)
library(shiny.telemetry)
library(spotifyr)
library(SpotifyNetwork)
library(spsComps)
library(searcher)
library(reactable)
library(visNetwork)
library(plotly)
library(bslib)
library(dplyr)
library(igraph)
# set global options
options(
shiny.browser = T,
spinner.color = "#16F529",
spinner.color.background = "#FFFFFF",
spinner.size = 2
)
# create theme
my_theme <- bs_theme(
bg = "#fdfefe",
fg = "black",
primary = "red",
base_font = font_google("Michroma"),
"font-size-base" = "0.75rem",
version = 5,
"navbar-bg" = "#16F529"
)
# initialize telemetry
telemetry <- Telemetry$new()
# define UI for application that gets Spotify network data
ui <- navbarPage(
title = strong("Spotify Data Importer"), id = "navbar",
# useShinyalert(),
windowTitle = "Spotify Data Importer",
# add telemetry javascript elements
header = use_telemetry(),
footer = h5(strong(tagList(h5(span("Spotify Data Importer for",style="color:green"), a("NodeXL", href = "https://www.nodexl.com/"))))),
theme = my_theme, collapsible = T, setBackgroundImage(src = "music.jpg"),
# add marquee visual element
tags$html(HTML("<marquee direction = right scrollamount = '12' style = 'color:green; font-size:17px;'><strong>Spotify Data Importer For <span style='color:red'>NodeXL</span></strong></marquee>"),
),
# Add social media icons to navbar
tags$style(".navbar-nav.socialmedia { display: flex; justify-content: right; flex-direction:row; padding: 5px; font-size: 20px; }"),
tags$div(class = "navbar-nav socialmedia",
tags$a(href = "https://www.github.com/Ifeanyi55", target = "_blank", icon("github", lib = "font-awesome"))),
tabPanel(
id = "tabOne", value = "oneTab", title = strong("Home"), icon = icon("home"),
sidebarLayout(
sidebarPanel(
id = "side", width = 3, h4(strong("Credentials")), hr(),
textInput("client_id", strong("Enter Client ID")),
textInput("client_secret", strong("Enter Client SECRET")), br(),
actionButton("validate", strong("Authenticate"), icon = icon("caret-right")), br(),hr(),
textOutput("valout")
),
mainPanel(
id = "main", width = 8,
span(style = "color:blue;",h5(strong(p(id = "dateclock")))),br(),
h2(strong("Welcome to the NodeXL Spotify Data Importer!")),
p(h5(strong("Before you begin scraping data, you will need to complete the steps below:"))), hr(),
p(h5(strong(tagList("STEP 1: Go to", a("https://developer.spotify.com/dashboard/", href = "https://developer.spotify.com/dashboard/"), "and login with your credentials")))), br(),
p(h5(strong("STEP 2: Create an app, and give it a name and a description"))), br(),
p(h5(strong("STEP 3: Get the generated client ID and client Secret, and return here"))), br(),
p(h5(strong("STEP 4: Enter the client ID and client Secret in the 'Credentials' box"))), br(),
p(h5(strong("STEP 5: Click the 'Authenticate' button"))), br(),
p(h5(strong("STEP 6: Wait for the system to authenticate your credentials and print out a reference ID"))), br(),
p(h5(strong("Great! You can now proceed to scraping network data via the Spotify API."))),
actionButton("nextTab", strong("Proceed")), hr()
)
)
),
tabPanel(
id = "tabA", value = "Atab", title = strong("Network Data"), icon = icon("table"),
# load and run the CSS script
includeCSS("style.css"),
# load and run the javascript script
includeScript("JSCode.js"),
sidebarLayout(
sidebarPanel(
width = 2, id = "sidebar",
actionButton("info", strong("Info"), icon = icon("info")), br(), br(), br(), tags$a(img(src = "spotify.png"), href = "https://open.spotify.com/"), br(), hr(),
textInput("id", strong("Enter Artist's Spotify Id")),
actionButton("run", strong("Related Data"), icon = icon("caret-right")),br(),hr(),br(),
h5(strong("Collaborators Data")),
actionButton("fetch", strong("Collab Data"), icon = icon("caret-right")),hr()
),
mainPanel(
# go to top button
spsGoTop(id = "up",right = "3%",bottom = "10%",icon = icon("arrow-up",color = "green")),
textInput("search", span(strong("Search Box"),style = "color:white;"), placeholder = "Search Google", width = "150px"),actionButton("search_bttn", strong("Search")),hr(),
fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Related Artists Network Data")))))),
fluidRow(
column(12, withSpinner(reactableOutput("network_data",width = 1000,height = 400), type = 1)),
),
fluidRow(
column(6, downloadButton("down_csv", strong("Download CSV"), icon = icon("download"))),
column(6, downloadButton("down_graphml", strong("Download GraphML"), icon = icon("download")))
),br(),br(),br(),
fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Artists Collaboration Network Data")))))),
fluidRow(
column(12,withSpinner(reactableOutput("collabs_data", width = 1000, height = 400),type = 1))
),
downloadButton("down_flat",strong("Download CSV"),icon = icon("download")),
br(), hr(), uiOutput("out")
)
)
),
tabPanel(
id = "tabB", value = "Btab", title = strong("80s Hits"), icon = icon("music"),
sidebarLayout(sidebarPanel = "", mainPanel(tags$iframe(
style = "border-radius:12px",
src = "https://open.spotify.com/embed/playlist/37i9dQZF1DXb57FjYWz00c?utm_source=generator",
width = "1350px",
height = "550px",
frameBorder = "0",
allowfullscreen = "",
allow = "autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture",
loading = "lazy"
)))
),
tabPanel(
id = "tabD", strong("NodeXL YouTube"), icon = icon("youtube"),
sidebarLayout(sidebarPanel(id = ""), mainPanel(
tags$iframe(
width = "620",
height = "350",
src = "https://www.youtube.com/embed/xKhYGRpbwOc",
title = "YouTube video player",
frameborder = "0",
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
allowfullscreen = T
), hr(),
tags$iframe(
width = "620",
height = "350",
src = "https://www.youtube.com/embed/Gs4NPuKIXdo",
title = "YouTube video player",
frameborder = "0",
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
allowfullscreen = T
), hr(),
tags$iframe(
width = "620",
height = "350",
src = "https://www.youtube.com/embed/J1W5uqAyHTg",
title = "YouTube video player",
frameborder = "0",
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
allowfullscreen = T
), hr(),
tags$iframe(
width = "620",
height = "350",
src = "https://www.youtube.com/embed/zEgrruOITHw",
title = "YouTube video player",
frameborder = "0",
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
allowfullscreen = T
), hr(),
tags$iframe(
width = "620",
height = "350",
src = "https://www.youtube.com/embed/pwsImFyc0lE",
title = "YouTube video player",
frameborder = "0",
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
allowfullscreen = T
), hr(),
tags$iframe(
width = "620",
height = "350",
src = "https://www.youtube.com/embed/mjAq8eA7uOM",
title = "YouTube video player",
frameborder = "0",
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
allowfullscreen = T
)
))
)
)
# define server logic required to get Spotify's network data
server <- function(input, output, session) {
# track events
telemetry$start_session()
# set up Spotify API credentials environment
authentication <- function(id, secret) {
client_ID <- id
client_secret <- secret
# authenticate the spotify client side
Sys.setenv(SPOTIFY_CLIENT_ID = client_ID)
Sys.setenv(SPOTIFY_CLIENT_SECRET = client_secret)
access_token <- get_spotify_access_token()
}
client_id <- reactive(as.character(input$client_id))
client_secret <- reactive(as.character(input$client_secret))
authenticate <- reactive(authentication(
client_id(),
client_secret()
))
validation <- eventReactive(input$validate, {
authenticate()
})
output$valout <- renderText({
validation()
})
# update nav bar page using the value of the tabPanel
# (i.e. value = "Atab")
observeEvent(input$nextTab, {
updateNavbarPage(session, inputId = "navbar", selected = "Atab")
})
# activate the search box
search_input <- reactive(input$search)
searchGoogle <- reactive(search_google(search_input(), rlang = F))
search_result <- eventReactive(input$search_bttn, {
searchGoogle()
})
output$out <- renderUI({
search_result()
})
# render spotify
# renderUI({
# tags$iframe(src = "https://open.spotify.com/")
# })
# turn text input into a reactive object
id_input <- reactive({
as.character(input$id)
})
# wrap SpotifyNetwork functions in reactive wrappers
# related_network <- reactive({
# related_artists_network(id_input())
# })
# artist_plot <- reactive({
# artists_popularity(id_input())
# })
nodes_table <- reactive({
related_artists_nodes(id_input())
})
edges_table <- reactive({
related_artists_edges(id_input())
})
# create event reactive element for each output
# network_react <- eventReactive(input$run, {
# related_network()
# })
# artist_react <- eventReactive(input$run, {
# artist_plot()
# })
nodes_react <- eventReactive(input$run, {
nodes_table()
})
edges_react <- eventReactive(input$run, {
edges_table()
})
# function to wrangle nodes & edges data into a NodeXL flat file
create_flatTabler <- function(dfN,dfE){
# scrape data from Vertex1
# as.vector(data,mode) converts the returned list into a vector
popularity <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[3]])
popularity <- as.vector(popularity,"numeric")
followers <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[4]])
followers <- as.vector(followers,"numeric")
profile <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[5]])
profile <- as.vector(profile,"character")
images <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[6]])
images <- as.vector(images,"character")
genre <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[7]])
genre <- as.vector(genre,"character")
# scrape data from Vertex2
# as.vector(data,mode) converts the returned list into a vector
popularityB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[3]])
popularityB <- as.vector(popularityB,"numeric")
followersB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[4]])
followersB <- as.vector(followersB,"numeric")
profileB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[5]])
profileB <- as.vector(profileB,"character")
imagesB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[6]])
imagesB <- as.vector(imagesB,"character")
genreB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[7]])
genreB <- as.vector(genreB,"character")
# assign scraped data for Vertex1 to new columns
dfE$`Vertex1 popularity` <- popularity
dfE$`Vertex1 followers` <- followers
dfE$`Vertex1 profile` <- profile
dfE$`Vertex1 images` <- images
dfE$`Vertex1 genre` <- genre
# assign scraped data for Vertex2 to new columns
dfE$`Vertex2 popularity` <- popularityB
dfE$`Vertex2 followers` <- followersB
dfE$`Vertex2 profile` <- profileB
dfE$`Vertex2 images` <- imagesB
dfE$`Vertex2 genre` <- genreB
dfE$`Edge Weight` <- round(dfE$`Vertex1 popularity`/dfE$`Vertex2 popularity`,2)
dfE <- dfE |> relocate(`Edge Weight`,.after = Vertex2)
return(dfE)
}
# parse edges_react to function
flat_file <- reactive({create_flatTabler(nodes_react(),edges_react())})
# add edge metadata
# flat_file()["Edge Weight"] <- reactive({round(flat_file()$`Vertex1 popularity`/flat_file()$`Vertex2 popularity`,2)})
#
# flat_file() <- flat_file() |>
# reactive({relocate(`Edge Weight`,.after = Vertex2)})
# create flat file event reactive object
flat_react <- eventReactive(input$run,{
flat_file()
})
# # render outputs
# output$network <- renderVisNetwork({
# network_react()
# })
#
# output$plot <- renderPlotly({
# artist_react()
# })
# function to download nodes data file
output$down_csv <- downloadHandler(
filename = function() {
paste("Related_artists", ".csv", sep = "")
},
content = function(file) {
write.csv(flat_react(), file)
}
)
output$network_data <- renderReactable({
tryCatch(
{
reactable(flat_react(),
theme = reactableTheme(
highlightColor = "#00e600",
borderColor = "#00e600",
borderWidth = 3
),
outlined = T,
bordered = T,
filterable = T,
striped = T,
compact = T,
highlight = T,
defaultColDef = colDef(
align = "center",
headerStyle = list(background = "#00e600")
),
paginationType = "simple"
)
},
error = function(e){
message("There was an error!")
print(e)
}
)
})
# function to generate GraphML file
create_graphml <- function(nodes,edges){
# create new graph object
graph <- graph_from_data_frame(edges)
# add attributes to graph nodes
{
V(graph)$Name <- nodes$name
V(graph)$Popularity <- nodes$popularity
V(graph)$Followers <- nodes$followers
V(graph)$Profile <- nodes$profile
V(graph)$Images <- nodes$images
V(graph)$Genre <- nodes$genre
}
return(graph)
}
# make function reactive
graphml_react <- reactive({
create_graphml(nodes_react(),
edges_react())})
# make function event reactive so that it is triggered
# by run action button
graphmlReact <- eventReactive(input$run,{
graphml_react()
})
# write GraphML download function
output$down_graphml <- downloadHandler(
filename = function(){
paste("Related_artists",".graphml",sep = "")
},
content = function(file){
write_graph(graphmlReact(),file,format = "graphml")
}
)
# import get_artists_collaborators() function
source("Collaborators.R")
# wrap in reactive wrappers
artists_collaborations <- reactive({get_artists_collaborators(id_input())})
# make event reactive
collabs_react <- eventReactive(input$fetch,{artists_collaborations()})
output$collabs_data <- renderReactable({
tryCatch(
{
reactable(collabs_react(),
theme = reactableTheme(
highlightColor = "#3498DA",
borderColor = "#3498DA",
borderWidth = 3
),
outlined = T,
bordered = T,
filterable = T,
striped = T,
compact = T,
highlight = T,
defaultColDef = colDef(
align = "center",
headerStyle = list(background = "#3498DA")
),
paginationType = "simple"
)
},
error = function(e){
message("There was an error!")
print(e)
}
)
})
# activate download button
output$down_flat <- downloadHandler(
filename = function(){
paste("CollabData",".csv",sep = "")
},
content = function(file){
write.csv(collabs_react(),file)
}
)
# function to download edges data file
# output$down_edges <- downloadHandler(
# filename = function() {
# paste("Edges", ".csv", sep = "")
# },
# content = function(file) {
# write.csv(edges_react(), file)
# }
# )
# output$edges <- renderReactable({
# reactable(edges_react(),
# theme = reactableTheme(
# highlightColor = "#00FFAB",
# borderColor = "#00FFAB"
# ),
# outlined = T,
# bordered = T,
# filterable = T,
# striped = T,
# compact = T,
# highlight = T,
# defaultColDef = colDef(
# align = "center",
# headerStyle = list(background = "#00FFAB")
# ),
# paginationType = "simple"
# )
# })
observeEvent(input$info, {
shinyalert(
title = "About Software", closeOnEsc = T, confirmButtonCol = "#006400",
imageUrl = "spotify.png",
closeOnClickOutside = T,
confirmButtonText = "Got It", showConfirmButton = T,
animation = "pop", timer = 20000,
text = "The Spotify Data Importer allows a user to
query the Spotify API and get network data
of artists that are related to a particular artist. You can also get data of artists that have collaborated together.
It typically takes between 16 and 20
seconds to get a response from the Spotify server for related
artists network data and more than that for artists collaboration
network data."
)
})
observeEvent(input$fetch,{
shinyalert(
closeOnEsc = T,
confirmButtonText = "Got It!",
confirmButtonCol = "#3498DA",
closeOnClickOutside = T,
showConfirmButton = T,
animation = "slide-from-top",
cancelButtonText = T,
timer = 10000,
text = "This may take a while to run, sorry!"
)
})
}
# Run the application
shinyApp(ui = ui, server = server)