File size: 19,023 Bytes
8145f0e
5f02390
 
 
 
 
 
 
 
 
 
 
 
 
8145f0e
 
5f02390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145f0e
5f02390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145f0e
 
5f02390
 
8145f0e
5f02390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145f0e
5f02390
8145f0e
5f02390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145f0e
5f02390
 
 
 
 
 
 
 
8145f0e
5f02390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145f0e
5f02390
8145f0e
 
5f02390
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
library(shiny)
library(shinyalert)
library(shinythemes)
library(shinydisconnect)
library(shinycssloaders)
library(shinyWidgets)
library(shiny.telemetry)
library(spotifyr)
library(SpotifyNetwork)
library(spsComps)
library(searcher)
library(reactable)
library(visNetwork)
library(plotly)
library(bslib)
library(dplyr)
library(igraph)

# set global options
options(
  shiny.browser = T,
  spinner.color = "#16F529",
  spinner.color.background = "#FFFFFF",
  spinner.size = 2
)

# create theme
my_theme <- bs_theme(
  bg = "#fdfefe",
  fg = "black",
  primary = "red",
  base_font = font_google("Michroma"),
  "font-size-base" = "0.75rem",
  version = 5,
  "navbar-bg" = "#16F529"
)

# initialize telemetry
telemetry <- Telemetry$new()


# define UI for application that gets Spotify network data
ui <- navbarPage(
  title = strong("Spotify Data Importer"), id = "navbar",
  # useShinyalert(),
  windowTitle = "Spotify Data Importer",
  
  # add telemetry javascript elements
  header = use_telemetry(),
  
  footer = h5(strong(tagList(h5(span("Spotify Data Importer for",style="color:green"), a("NodeXL", href = "https://www.nodexl.com/"))))),
  theme = my_theme, collapsible = T, setBackgroundImage(src = "music.jpg"),
  # add marquee visual element
  tags$html(HTML("<marquee direction = right scrollamount = '12' style = 'color:green; font-size:17px;'><strong>Spotify Data Importer For <span style='color:red'>NodeXL</span></strong></marquee>"),
),  
  # Add social media icons to navbar
  tags$style(".navbar-nav.socialmedia { display: flex; justify-content: right; flex-direction:row; padding: 5px; font-size: 20px; }"),
  tags$div(class = "navbar-nav socialmedia",
           tags$a(href = "https://www.github.com/Ifeanyi55", target = "_blank", icon("github", lib = "font-awesome"))),
  
  tabPanel(
    id = "tabOne", value = "oneTab", title = strong("Home"), icon = icon("home"),
    sidebarLayout(
      sidebarPanel(
        id = "side", width = 3, h4(strong("Credentials")), hr(),
        textInput("client_id", strong("Enter Client ID")),
        textInput("client_secret", strong("Enter Client SECRET")), br(),
        actionButton("validate", strong("Authenticate"), icon = icon("caret-right")), br(),hr(),
        textOutput("valout")
      ),
      mainPanel(
        id = "main", width = 8,
        span(style = "color:blue;",h5(strong(p(id = "dateclock")))),br(),
        h2(strong("Welcome to the NodeXL Spotify Data Importer!")),
        p(h5(strong("Before you begin scraping data, you will need to complete the steps below:"))), hr(),
        p(h5(strong(tagList("STEP 1: Go to", a("https://developer.spotify.com/dashboard/", href = "https://developer.spotify.com/dashboard/"), "and login with your credentials")))), br(),
        p(h5(strong("STEP 2: Create an app, and give it a name and a description"))), br(),
        p(h5(strong("STEP 3: Get the generated client ID and client Secret, and return here"))), br(),
        p(h5(strong("STEP 4: Enter the client ID and client Secret in the 'Credentials' box"))), br(),
        p(h5(strong("STEP 5: Click the 'Authenticate' button"))), br(),
        p(h5(strong("STEP 6: Wait for the system to authenticate your credentials and print out a reference ID"))), br(),
        p(h5(strong("Great! You can now proceed to scraping network data via the Spotify API."))),
        actionButton("nextTab", strong("Proceed")), hr()
      )
    )
  ),
  tabPanel(
    id = "tabA", value = "Atab", title = strong("Network Data"), icon = icon("table"),

    # load and run the CSS script
    includeCSS("style.css"),
    # load and run the javascript script
    includeScript("JSCode.js"),
    sidebarLayout(
      sidebarPanel(
        width = 2, id = "sidebar",
        actionButton("info", strong("Info"), icon = icon("info")), br(), br(), br(), tags$a(img(src = "spotify.png"), href = "https://open.spotify.com/"), br(), hr(),
        textInput("id", strong("Enter Artist's Spotify Id")),
        actionButton("run", strong("Related Data"), icon = icon("caret-right")),br(),hr(),br(),
        h5(strong("Collaborators Data")),
        actionButton("fetch", strong("Collab Data"), icon = icon("caret-right")),hr()
      ),
      
      mainPanel(
        # go to top button
        spsGoTop(id = "up",right = "3%",bottom = "10%",icon = icon("arrow-up",color = "green")),
        textInput("search", span(strong("Search Box"),style = "color:white;"), placeholder = "Search Google", width = "150px"),actionButton("search_bttn", strong("Search")),hr(),
        fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Related Artists Network Data")))))),
        fluidRow(
          column(12, withSpinner(reactableOutput("network_data",width = 1000,height = 400), type = 1)),
        ),
        fluidRow(
          column(6, downloadButton("down_csv", strong("Download CSV"), icon = icon("download"))),
          column(6, downloadButton("down_graphml", strong("Download GraphML"), icon = icon("download")))
        ),br(),br(),br(),
        fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Artists Collaboration Network Data")))))),
        fluidRow(
          column(12,withSpinner(reactableOutput("collabs_data", width = 1000, height = 400),type = 1))
        ),
        downloadButton("down_flat",strong("Download CSV"),icon = icon("download")),
        br(), hr(), uiOutput("out")
      )
    )
  ),
  tabPanel(
    id = "tabB", value = "Btab", title = strong("80s Hits"), icon = icon("music"),
    sidebarLayout(sidebarPanel = "", mainPanel(tags$iframe(
      style = "border-radius:12px",
      src = "https://open.spotify.com/embed/playlist/37i9dQZF1DXb57FjYWz00c?utm_source=generator",
      width = "1350px",
      height = "550px",
      frameBorder = "0",
      allowfullscreen = "",
      allow = "autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture",
      loading = "lazy"
    )))
  ),
  tabPanel(
      id = "tabD", strong("NodeXL YouTube"), icon = icon("youtube"),
      sidebarLayout(sidebarPanel(id = ""), mainPanel(
        tags$iframe(
          width = "620",
          height = "350",
          src = "https://www.youtube.com/embed/xKhYGRpbwOc",
          title = "YouTube video player",
          frameborder = "0",
          allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
          allowfullscreen = T
        ), hr(),
        tags$iframe(
          width = "620",
          height = "350",
          src = "https://www.youtube.com/embed/Gs4NPuKIXdo",
          title = "YouTube video player",
          frameborder = "0",
          allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
          allowfullscreen = T
        ), hr(),
        tags$iframe(
          width = "620",
          height = "350",
          src = "https://www.youtube.com/embed/J1W5uqAyHTg",
          title = "YouTube video player",
          frameborder = "0",
          allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
          allowfullscreen = T
        ), hr(),
        tags$iframe(
          width = "620",
          height = "350",
          src = "https://www.youtube.com/embed/zEgrruOITHw",
          title = "YouTube video player",
          frameborder = "0",
          allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
          allowfullscreen = T
        ), hr(),
        tags$iframe(
          width = "620",
          height = "350",
          src = "https://www.youtube.com/embed/pwsImFyc0lE",
          title = "YouTube video player",
          frameborder = "0",
          allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
          allowfullscreen = T
        ), hr(),
        tags$iframe(
          width = "620",
          height = "350",
          src = "https://www.youtube.com/embed/mjAq8eA7uOM",
          title = "YouTube video player",
          frameborder = "0",
          allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture",
          allowfullscreen = T
        )
      ))
    )
  )


# define server logic required to get Spotify's network data
server <- function(input, output, session) {
  # track events
  telemetry$start_session()

  # set up Spotify API credentials environment
  authentication <- function(id, secret) {
    client_ID <- id
    client_secret <- secret

    # authenticate the spotify client side
    Sys.setenv(SPOTIFY_CLIENT_ID = client_ID)
    Sys.setenv(SPOTIFY_CLIENT_SECRET = client_secret)

    access_token <- get_spotify_access_token()
  }

  client_id <- reactive(as.character(input$client_id))
  client_secret <- reactive(as.character(input$client_secret))
  authenticate <- reactive(authentication(
    client_id(),
    client_secret()
  ))
  validation <- eventReactive(input$validate, {
    authenticate()
  })

  output$valout <- renderText({
    validation()
  })

  # update nav bar page using the value of the tabPanel
  # (i.e. value = "Atab")
  observeEvent(input$nextTab, {
    updateNavbarPage(session, inputId = "navbar", selected = "Atab")
  })

  
  
  # activate the search box
  search_input <- reactive(input$search)

  searchGoogle <- reactive(search_google(search_input(), rlang = F))

  search_result <- eventReactive(input$search_bttn, {
    searchGoogle()
  })

  output$out <- renderUI({
    search_result()
  })

  # render spotify
  # renderUI({
  #   tags$iframe(src = "https://open.spotify.com/")
  # })


  # turn text input into a reactive object
  id_input <- reactive({
    as.character(input$id)
  })

  # wrap SpotifyNetwork functions in reactive wrappers
  # related_network <- reactive({
  #   related_artists_network(id_input())
  # })
  # artist_plot <- reactive({
  #   artists_popularity(id_input())
  # })
  nodes_table <- reactive({
    related_artists_nodes(id_input())
  })
  edges_table <- reactive({
    related_artists_edges(id_input())
  })

  # create event reactive element for each output
  # network_react <- eventReactive(input$run, {
  #   related_network()
  # })
  # artist_react <- eventReactive(input$run, {
  #   artist_plot()
  # })
  nodes_react <- eventReactive(input$run, {
    nodes_table()
  })
  edges_react <- eventReactive(input$run, {
    edges_table()
  })
  
  # function to wrangle nodes & edges data into a NodeXL flat file
  create_flatTabler <- function(dfN,dfE){
    
    
    # scrape data from Vertex1
    # as.vector(data,mode) converts the returned list into a vector
    popularity <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[3]])
    popularity <- as.vector(popularity,"numeric")
    
    
    followers <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[4]])
    followers <- as.vector(followers,"numeric")
    
    
    profile <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[5]])
    profile <- as.vector(profile,"character")
    
    
    images <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[6]])
    images <- as.vector(images,"character")
    
    
    genre <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[7]])
    genre <- as.vector(genre,"character")
    
    
    # scrape data from Vertex2
    # as.vector(data,mode) converts the returned list into a vector
    popularityB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[3]])
    popularityB <- as.vector(popularityB,"numeric")
    
    
    followersB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[4]])
    followersB <- as.vector(followersB,"numeric")
    
    
    profileB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[5]])
    profileB <- as.vector(profileB,"character")
    
    
    imagesB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[6]])
    imagesB <- as.vector(imagesB,"character")
    
    
    genreB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[7]])
    genreB <- as.vector(genreB,"character")
    
    
    # assign scraped data for Vertex1 to new columns
    dfE$`Vertex1 popularity` <- popularity
    dfE$`Vertex1 followers` <- followers
    dfE$`Vertex1 profile` <- profile
    dfE$`Vertex1 images` <- images
    dfE$`Vertex1 genre` <- genre
    
    # assign scraped data for Vertex2 to new columns
    dfE$`Vertex2 popularity` <- popularityB
    dfE$`Vertex2 followers` <- followersB
    dfE$`Vertex2 profile` <- profileB
    dfE$`Vertex2 images` <- imagesB
    dfE$`Vertex2 genre` <- genreB
    
    dfE$`Edge Weight` <- round(dfE$`Vertex1 popularity`/dfE$`Vertex2 popularity`,2)
    
    dfE <- dfE |> relocate(`Edge Weight`,.after = Vertex2)
    
    return(dfE)
    
    
  }
  
  
  # parse edges_react to function
  flat_file <- reactive({create_flatTabler(nodes_react(),edges_react())})
  
  # add edge metadata
  # flat_file()["Edge Weight"] <- reactive({round(flat_file()$`Vertex1 popularity`/flat_file()$`Vertex2 popularity`,2)})
  # 
  # flat_file() <- flat_file() |>
  # reactive({relocate(`Edge Weight`,.after = Vertex2)})

  # create flat file event reactive object
  flat_react <- eventReactive(input$run,{
    flat_file()
  })
  
  # # render outputs
  # output$network <- renderVisNetwork({
  #   network_react()
  # })
  # 
  # output$plot <- renderPlotly({
  #   artist_react()
  # })

  # function to download nodes data file
  output$down_csv <- downloadHandler(
    filename = function() {
      paste("Related_artists", ".csv", sep = "")
    },
    content = function(file) {
      write.csv(flat_react(), file)
    }
  )

  output$network_data <- renderReactable({
    
        tryCatch(
          {
            reactable(flat_react(),
                      theme = reactableTheme(
                        highlightColor = "#00e600",
                        borderColor = "#00e600",
                        borderWidth = 3
                      ),
                      outlined = T,
                      bordered = T,
                      filterable = T,
                      striped = T,
                      compact = T,
                      highlight = T,
                      defaultColDef = colDef(
                        align = "center",
                        headerStyle = list(background = "#00e600")
                      ),
                      paginationType = "simple"
            )
            
          },
          error = function(e){
            message("There was an error!")
            print(e)
          }
        )
  })
  
  # function to generate GraphML file
  create_graphml <- function(nodes,edges){
    
    # create new graph object
    graph <- graph_from_data_frame(edges)
    
    
    # add attributes to graph nodes
    {
      V(graph)$Name <- nodes$name
      V(graph)$Popularity <- nodes$popularity
      V(graph)$Followers <- nodes$followers
      V(graph)$Profile <- nodes$profile
      V(graph)$Images <- nodes$images
      V(graph)$Genre <- nodes$genre
    }
    
    return(graph)
    
  }
  
  # make function reactive
  graphml_react <- reactive({
    create_graphml(nodes_react(),
                   edges_react())})
  
  # make function event reactive so that it is triggered
  # by run action button
  graphmlReact <- eventReactive(input$run,{
    graphml_react()
  })

  
  # write GraphML download function
  output$down_graphml <- downloadHandler(
    filename = function(){
      paste("Related_artists",".graphml",sep = "")
    },
    content = function(file){
      write_graph(graphmlReact(),file,format = "graphml")
    }
  )
  
  # import get_artists_collaborators() function
  source("Collaborators.R")
  
  # wrap in reactive wrappers
  artists_collaborations <- reactive({get_artists_collaborators(id_input())})
  
  # make event reactive
  collabs_react <- eventReactive(input$fetch,{artists_collaborations()})
  
  output$collabs_data <- renderReactable({
    tryCatch(
      {
        reactable(collabs_react(),
                  theme = reactableTheme(
                    highlightColor = "#3498DA",
                    borderColor = "#3498DA",
                    borderWidth = 3
                  ),
                  outlined = T,
                  bordered = T,
                  filterable = T,
                  striped = T,
                  compact = T,
                  highlight = T,
                  defaultColDef = colDef(
                    align = "center",
                    headerStyle = list(background = "#3498DA")
                  ),
                  paginationType = "simple"
        )
      },
      error = function(e){
        message("There was an error!")
        print(e)
      }
    )
  })
  
  # activate download button
  output$down_flat <- downloadHandler(
    filename = function(){
      paste("CollabData",".csv",sep = "")
    },
    content = function(file){
      write.csv(collabs_react(),file)
    }
  )

  # function to download edges data file
  # output$down_edges <- downloadHandler(
  #   filename = function() {
  #     paste("Edges", ".csv", sep = "")
  #   },
  #   content = function(file) {
  #     write.csv(edges_react(), file)
  #   }
  # )


  # output$edges <- renderReactable({
  #   reactable(edges_react(),
  #     theme = reactableTheme(
  #       highlightColor = "#00FFAB",
  #       borderColor = "#00FFAB"
  #     ),
  #     outlined = T,
  #     bordered = T,
  #     filterable = T,
  #     striped = T,
  #     compact = T,
  #     highlight = T,
  #     defaultColDef = colDef(
  #       align = "center",
  #       headerStyle = list(background = "#00FFAB")
  #     ),
  #     paginationType = "simple"
  #   )
  # })

  observeEvent(input$info, {
    shinyalert(
      title = "About Software", closeOnEsc = T, confirmButtonCol = "#006400",
      imageUrl = "spotify.png",
      closeOnClickOutside = T,
      confirmButtonText = "Got It", showConfirmButton = T,
      animation = "pop", timer = 20000,
      text = "The Spotify Data Importer allows a user to
              query the Spotify API and get network data 
              of artists that are related to a particular artist. You can also get data of artists that have collaborated together. 
      
              It typically takes between 16 and 20 
              seconds to get a response from the Spotify server for related
              artists network data and more than that for artists collaboration
              network data."
  )
  })
  
  
    observeEvent(input$fetch,{
      shinyalert(
        closeOnEsc = T,
        confirmButtonText = "Got It!",
        confirmButtonCol = "#3498DA",
        closeOnClickOutside = T,
        showConfirmButton = T,
        animation = "slide-from-top",
        cancelButtonText = T,
        timer = 10000,
        text = "This may take a while to run, sorry!"
        
      )
    })
    
  
}

  

# Run the application
shinyApp(ui = ui, server = server)