Spaces:
Runtime error
Runtime error
IanNathaniel
commited on
Commit
·
a2de11c
1
Parent(s):
80e7256
Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import math
|
5 |
+
#import pytorch_colors as colors
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
class enhance_net_nopool(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
super(enhance_net_nopool, self).__init__()
|
12 |
+
|
13 |
+
self.relu = nn.ReLU(inplace=True)
|
14 |
+
|
15 |
+
number_f = 32
|
16 |
+
self.e_conv1 = nn.Conv2d(3,number_f,3,1,1,bias=True)
|
17 |
+
self.e_conv2 = nn.Conv2d(number_f,number_f,3,1,1,bias=True)
|
18 |
+
self.e_conv3 = nn.Conv2d(number_f,number_f,3,1,1,bias=True)
|
19 |
+
self.e_conv4 = nn.Conv2d(number_f,number_f,3,1,1,bias=True)
|
20 |
+
self.e_conv5 = nn.Conv2d(number_f*2,number_f,3,1,1,bias=True)
|
21 |
+
self.e_conv6 = nn.Conv2d(number_f*2,number_f,3,1,1,bias=True)
|
22 |
+
self.e_conv7 = nn.Conv2d(number_f*2,24,3,1,1,bias=True)
|
23 |
+
|
24 |
+
self.maxpool = nn.MaxPool2d(2, stride=2, return_indices=False, ceil_mode=False)
|
25 |
+
self.upsample = nn.UpsamplingBilinear2d(scale_factor=2)
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
|
31 |
+
x1 = self.relu(self.e_conv1(x))
|
32 |
+
# p1 = self.maxpool(x1)
|
33 |
+
x2 = self.relu(self.e_conv2(x1))
|
34 |
+
# p2 = self.maxpool(x2)
|
35 |
+
x3 = self.relu(self.e_conv3(x2))
|
36 |
+
# p3 = self.maxpool(x3)
|
37 |
+
x4 = self.relu(self.e_conv4(x3))
|
38 |
+
|
39 |
+
x5 = self.relu(self.e_conv5(torch.cat([x3,x4],1)))
|
40 |
+
# x5 = self.upsample(x5)
|
41 |
+
x6 = self.relu(self.e_conv6(torch.cat([x2,x5],1)))
|
42 |
+
|
43 |
+
x_r = F.tanh(self.e_conv7(torch.cat([x1,x6],1)))
|
44 |
+
r1,r2,r3,r4,r5,r6,r7,r8 = torch.split(x_r, 3, dim=1)
|
45 |
+
|
46 |
+
|
47 |
+
x = x + r1*(torch.pow(x,2)-x)
|
48 |
+
x = x + r2*(torch.pow(x,2)-x)
|
49 |
+
x = x + r3*(torch.pow(x,2)-x)
|
50 |
+
enhance_image_1 = x + r4*(torch.pow(x,2)-x)
|
51 |
+
x = enhance_image_1 + r5*(torch.pow(enhance_image_1,2)-enhance_image_1)
|
52 |
+
x = x + r6*(torch.pow(x,2)-x)
|
53 |
+
x = x + r7*(torch.pow(x,2)-x)
|
54 |
+
enhance_image = x + r8*(torch.pow(x,2)-x)
|
55 |
+
r = torch.cat([r1,r2,r3,r4,r5,r6,r7,r8],1)
|
56 |
+
return enhance_image_1,enhance_image,r
|
57 |
+
|
58 |
+
|
59 |
+
|