Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
#import pytorch_colors as colors | |
import numpy as np | |
class enhance_net_nopool(nn.Module): | |
def __init__(self): | |
super(enhance_net_nopool, self).__init__() | |
self.relu = nn.ReLU(inplace=True) | |
number_f = 32 | |
self.e_conv1 = nn.Conv2d(3,number_f,3,1,1,bias=True) | |
self.e_conv2 = nn.Conv2d(number_f,number_f,3,1,1,bias=True) | |
self.e_conv3 = nn.Conv2d(number_f,number_f,3,1,1,bias=True) | |
self.e_conv4 = nn.Conv2d(number_f,number_f,3,1,1,bias=True) | |
self.e_conv5 = nn.Conv2d(number_f*2,number_f,3,1,1,bias=True) | |
self.e_conv6 = nn.Conv2d(number_f*2,number_f,3,1,1,bias=True) | |
self.e_conv7 = nn.Conv2d(number_f*2,24,3,1,1,bias=True) | |
self.maxpool = nn.MaxPool2d(2, stride=2, return_indices=False, ceil_mode=False) | |
self.upsample = nn.UpsamplingBilinear2d(scale_factor=2) | |
def forward(self, x): | |
x1 = self.relu(self.e_conv1(x)) | |
# p1 = self.maxpool(x1) | |
x2 = self.relu(self.e_conv2(x1)) | |
# p2 = self.maxpool(x2) | |
x3 = self.relu(self.e_conv3(x2)) | |
# p3 = self.maxpool(x3) | |
x4 = self.relu(self.e_conv4(x3)) | |
x5 = self.relu(self.e_conv5(torch.cat([x3,x4],1))) | |
# x5 = self.upsample(x5) | |
x6 = self.relu(self.e_conv6(torch.cat([x2,x5],1))) | |
x_r = F.tanh(self.e_conv7(torch.cat([x1,x6],1))) | |
r1,r2,r3,r4,r5,r6,r7,r8 = torch.split(x_r, 3, dim=1) | |
x = x + r1*(torch.pow(x,2)-x) | |
x = x + r2*(torch.pow(x,2)-x) | |
x = x + r3*(torch.pow(x,2)-x) | |
enhance_image_1 = x + r4*(torch.pow(x,2)-x) | |
x = enhance_image_1 + r5*(torch.pow(enhance_image_1,2)-enhance_image_1) | |
x = x + r6*(torch.pow(x,2)-x) | |
x = x + r7*(torch.pow(x,2)-x) | |
enhance_image = x + r8*(torch.pow(x,2)-x) | |
r = torch.cat([r1,r2,r3,r4,r5,r6,r7,r8],1) | |
return enhance_image_1,enhance_image,r | |