Multi-Model-OCR / app.py
IFMedTechdemo's picture
Update app.py
c1e1bba verified
import os
import time
import torch
import spaces
import warnings
import tempfile
import sys
from io import StringIO
from contextlib import contextmanager
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
AutoModel,
AutoTokenizer,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer
)
from huggingface_hub import snapshot_download
from qwen_vl_utils import process_vision_info
# Suppress the warning about uninitialized weights
warnings.filterwarnings('ignore', message='Some weights.*were not initialized')
# Try importing Qwen3VL if available
try:
from transformers import Qwen3VLForConditionalGeneration
except ImportError:
Qwen3VLForConditionalGeneration = None
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
CACHE_DIR = os.getenv("HF_CACHE_DIR", "./models")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Initial Device: {device}")
print(f"CUDA Available: {torch.cuda.is_available()}")
# Load Chandra-OCR
try:
MODEL_ID_V = "datalab-to/chandra"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
if Qwen3VLForConditionalGeneration:
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ Chandra-OCR loaded")
else:
model_v = None
print("✗ Chandra-OCR: Qwen3VL not available")
except Exception as e:
model_v = None
processor_v = None
print(f"✗ Chandra-OCR: Failed to load - {str(e)}")
# Load Nanonets-OCR2-3B
try:
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ Nanonets-OCR2-3B loaded")
except Exception as e:
model_x = None
processor_x = None
print(f"✗ Nanonets-OCR2-3B: Failed to load - {str(e)}")
# Load olmOCR-2-7B-1025
try:
MODEL_ID_M = "allenai/olmOCR-2-7B-1025"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ olmOCR-2-7B-1025 loaded")
except Exception as e:
model_m = None
processor_m = None
print(f"✗ olmOCR-2-7B-1025: Failed to load - {str(e)}")
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
This function is decorated with @spaces.GPU to ensure it runs on GPU
when available in Hugging Face Spaces.
Args:
model_name: Name of the OCR model to use
text: Prompt text for the model
image: PIL Image object to process
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
repetition_penalty: Penalty for repeating tokens
Yields:
tuple: (raw_text, markdown_text)
"""
# Device will be cuda when @spaces.GPU decorator activates
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Select model and processor based on model_name
if model_name == "olmOCR-2-7B-1025":
if model_m is None:
yield "olmOCR-2-7B-1025 is not available.", "olmOCR-2-7B-1025 is not available."
return
processor = processor_m
model = model_m
elif model_name == "Nanonets-OCR2-3B":
if model_x is None:
yield "Nanonets-OCR2-3B is not available.", "Nanonets-OCR2-3B is not available."
return
processor = processor_x
model = model_x
elif model_name == "Chandra-OCR":
if model_v is None:
yield "Chandra-OCR is not available.", "Chandra-OCR is not available."
return
processor = processor_v
model = model_v
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
try:
# Prepare messages in chat format
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
# Apply chat template with fallback
try:
prompt_full = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as template_error:
# Fallback: create a simple prompt without chat template
print(f"Chat template error: {template_error}. Using fallback prompt.")
prompt_full = f"{text}"
# Process inputs
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True
).to(device)
# Setup streaming generation
streamer = TextIteratorStreamer(
processor.tokenizer if hasattr(processor, 'tokenizer') else processor,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the results
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Ensure thread completes
thread.join()
except Exception as e:
error_msg = f"Error during generation: {str(e)}"
print(f"Full error: {e}")
import traceback
traceback.print_exc()
yield error_msg, error_msg
# Example usage for Gradio interface
if __name__ == "__main__":
import gradio as gr
# Determine available models
available_models = []
if model_m is not None:
available_models.append("olmOCR-2-7B-1025")
print(" Added: olmOCR-2-7B-1025")
if model_x is not None:
available_models.append("Nanonets-OCR2-3B")
print(" Added: Nanonets-OCR2-3B")
if model_v is not None:
available_models.append("Chandra-OCR")
print(" Added: Chandra-OCR")
if not available_models:
print("ERROR: No models were loaded successfully!")
exit(1)
print(f"\n✓ Available models for dropdown: {', '.join(available_models)}")
with gr.Blocks(title="Multi-Model OCR") as demo:
gr.Markdown("# 🔍 Multi-Model OCR Application")
gr.Markdown("Upload an image and select a model to extract text. Models run on GPU via Hugging Face Spaces.")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=available_models,
value=available_models[0] if available_models else None,
label="Select OCR Model"
)
image_input = gr.Image(type="pil", label="Upload Image")
text_input = gr.Textbox(
value="Extract all text from this image.",
label="Prompt",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens = gr.Slider(
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
value=DEFAULT_MAX_NEW_TOKENS,
step=1,
label="Max New Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty"
)
submit_btn = gr.Button("Extract Text", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Extracted Text", lines=20)
output_markdown = gr.Markdown(label="Formatted Output")
gr.Markdown("""
### Available Models:
- **olmOCR-2-7B-1025**: Allen AI's OCR model
- **Nanonets-OCR2-3B**: Nanonets OCR model
- **Chandra-OCR**: Datalab OCR model
""")
submit_btn.click(
fn=generate_image,
inputs=[
model_selector,
text_input,
image_input,
max_tokens,
temperature,
top_p,
top_k,
repetition_penalty
],
outputs=[output_text, output_markdown]
)
# Launch with share=True for Hugging Face Spaces
demo.launch(share=True)