Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -698,17 +698,22 @@ def main():
|
|
698 |
|
699 |
st.info("Please input the following information「请输入以下信息...」")
|
700 |
model_type = st.selectbox('Select task type「选择任务类型」',['Text classification「文本分类」','Sentiment「情感分析」','Similarity「语义匹配」','NLI 「自然语言推理」','Multiple Choice「多项式阅读理解」'])
|
701 |
-
|
702 |
if '中文' in language:
|
703 |
-
sentences =
|
704 |
-
question =
|
705 |
-
choice =
|
706 |
else:
|
707 |
-
sentences =
|
708 |
-
question =
|
709 |
-
choice =
|
|
|
|
|
710 |
|
711 |
-
|
|
|
|
|
|
|
712 |
|
713 |
data = [{"texta": sentences,
|
714 |
"textb": "",
|
@@ -722,7 +727,7 @@ def main():
|
|
722 |
result = model.predict(data, cuda=False)
|
723 |
st.success(f"Prediction is successful, consumes {str(time.time()-start)} seconds")
|
724 |
st.json(result[0])
|
725 |
-
|
726 |
|
727 |
|
728 |
|
|
|
698 |
|
699 |
st.info("Please input the following information「请输入以下信息...」")
|
700 |
model_type = st.selectbox('Select task type「选择任务类型」',['Text classification「文本分类」','Sentiment「情感分析」','Similarity「语义匹配」','NLI 「自然语言推理」','Multiple Choice「多项式阅读理解」'])
|
701 |
+
form = st.form("参数设置")
|
702 |
if '中文' in language:
|
703 |
+
sentences = form.text_area("Please input the context「请输入句子」", text_dict[model_type])
|
704 |
+
question = form.text_input("Please input the question「请输入问题(不输入问题也可以)」", question_dict[model_type])
|
705 |
+
choice = form.text_input("Please input the label「输入标签(以中文;分割)」", choice_dict[model_type])
|
706 |
else:
|
707 |
+
sentences = form.text_area("Please input the context「请输入句子」", text_dict_en[model_type])
|
708 |
+
question = form.text_input("Please input the question「请输入问题(不输入问题也可以)」", question_dict_en[model_type])
|
709 |
+
choice = form.text_input("Please input the label(split by ‘;’)「输入标签(以中文;分割)」", choice_dict_en[model_type])
|
710 |
+
|
711 |
+
form.form_submit_button("Submit「点击一下,开始预测!」")
|
712 |
|
713 |
+
if '中文' in language:
|
714 |
+
choice = choice.split(';')
|
715 |
+
else:
|
716 |
+
choice = choice.split(';')
|
717 |
|
718 |
data = [{"texta": sentences,
|
719 |
"textb": "",
|
|
|
727 |
result = model.predict(data, cuda=False)
|
728 |
st.success(f"Prediction is successful, consumes {str(time.time()-start)} seconds")
|
729 |
st.json(result[0])
|
730 |
+
|
731 |
|
732 |
|
733 |
|