Spaces:
Running
Running
from typing import Optional, Tuple | |
import torch | |
from torch.nn.utils import remove_weight_norm | |
from torch.nn.utils.parametrizations import weight_norm | |
from rvc.lib.algorithm.modules import WaveNet | |
from rvc.lib.algorithm.commons import get_padding, init_weights | |
LRELU_SLOPE = 0.1 | |
def create_conv1d_layer(channels, kernel_size, dilation): | |
return weight_norm( | |
torch.nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation, | |
padding=get_padding(kernel_size, dilation), | |
) | |
) | |
def apply_mask(tensor, mask): | |
return tensor * mask if mask is not None else tensor | |
class ResBlockBase(torch.nn.Module): | |
def __init__(self, channels: int, kernel_size: int, dilations: Tuple[int]): | |
super(ResBlockBase, self).__init__() | |
self.convs1 = torch.nn.ModuleList( | |
[create_conv1d_layer(channels, kernel_size, d) for d in dilations] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = torch.nn.ModuleList( | |
[create_conv1d_layer(channels, kernel_size, 1) for _ in dilations] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x, x_mask=None): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) | |
xt = apply_mask(xt, x_mask) | |
xt = torch.nn.functional.leaky_relu(c1(xt), LRELU_SLOPE) | |
xt = apply_mask(xt, x_mask) | |
xt = c2(xt) | |
x = xt + x | |
return apply_mask(x, x_mask) | |
def remove_weight_norm(self): | |
for conv in self.convs1 + self.convs2: | |
remove_weight_norm(conv) | |
class ResBlock(ResBlockBase): | |
def __init__( | |
self, channels: int, kernel_size: int = 3, dilation: Tuple[int] = (1, 3, 5) | |
): | |
super(ResBlock, self).__init__(channels, kernel_size, dilation) | |
class Flip(torch.nn.Module): | |
"""Flip module for flow-based models. | |
This module flips the input along the time dimension. | |
""" | |
def forward(self, x, *args, reverse=False, **kwargs): | |
"""Forward pass. | |
Args: | |
x (torch.Tensor): Input tensor. | |
reverse (bool, optional): Whether to reverse the operation. Defaults to False. | |
""" | |
x = torch.flip(x, [1]) | |
if not reverse: | |
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) | |
return x, logdet | |
else: | |
return x | |
class ResidualCouplingBlock(torch.nn.Module): | |
"""Residual Coupling Block for normalizing flow. | |
Args: | |
channels (int): Number of channels in the input. | |
hidden_channels (int): Number of hidden channels in the coupling layer. | |
kernel_size (int): Kernel size of the convolutional layers. | |
dilation_rate (int): Dilation rate of the convolutional layers. | |
n_layers (int): Number of layers in the coupling layer. | |
n_flows (int, optional): Number of coupling layers in the block. Defaults to 4. | |
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
dilation_rate: int, | |
n_layers: int, | |
n_flows: int = 4, | |
gin_channels: int = 0, | |
): | |
super(ResidualCouplingBlock, self).__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.flows = torch.nn.ModuleList() | |
for i in range(n_flows): | |
self.flows.append( | |
ResidualCouplingLayer( | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
mean_only=True, | |
) | |
) | |
self.flows.append(Flip()) | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
g: Optional[torch.Tensor] = None, | |
reverse: bool = False, | |
): | |
if not reverse: | |
for flow in self.flows: | |
x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
else: | |
for flow in reversed(self.flows): | |
x = flow.forward(x, x_mask, g=g, reverse=reverse) | |
return x | |
def remove_weight_norm(self): | |
"""Removes weight normalization from the coupling layers.""" | |
for i in range(self.n_flows): | |
self.flows[i * 2].remove_weight_norm() | |
def __prepare_scriptable__(self): | |
"""Prepares the module for scripting.""" | |
for i in range(self.n_flows): | |
for hook in self.flows[i * 2]._forward_pre_hooks.values(): | |
if ( | |
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
and hook.__class__.__name__ == "WeightNorm" | |
): | |
torch.nn.utils.remove_weight_norm(self.flows[i * 2]) | |
return self | |
class ResidualCouplingLayer(torch.nn.Module): | |
"""Residual coupling layer for flow-based models. | |
Args: | |
channels (int): Number of channels. | |
hidden_channels (int): Number of hidden channels. | |
kernel_size (int): Size of the convolutional kernel. | |
dilation_rate (int): Dilation rate of the convolution. | |
n_layers (int): Number of convolutional layers. | |
p_dropout (float, optional): Dropout probability. Defaults to 0. | |
gin_channels (int, optional): Number of conditioning channels. Defaults to 0. | |
mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
dilation_rate: int, | |
n_layers: int, | |
p_dropout: float = 0, | |
gin_channels: int = 0, | |
mean_only: bool = False, | |
): | |
assert channels % 2 == 0, "channels should be divisible by 2" | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.half_channels = channels // 2 | |
self.mean_only = mean_only | |
self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1) | |
self.enc = WaveNet( | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
p_dropout=p_dropout, | |
gin_channels=gin_channels, | |
) | |
self.post = torch.nn.Conv1d( | |
hidden_channels, self.half_channels * (2 - mean_only), 1 | |
) | |
self.post.weight.data.zero_() | |
self.post.bias.data.zero_() | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
g: Optional[torch.Tensor] = None, | |
reverse: bool = False, | |
): | |
"""Forward pass. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch_size, channels, time_steps). | |
x_mask (torch.Tensor): Mask tensor of shape (batch_size, 1, time_steps). | |
g (torch.Tensor, optional): Conditioning tensor of shape (batch_size, gin_channels, time_steps). | |
Defaults to None. | |
reverse (bool, optional): Whether to reverse the operation. Defaults to False. | |
""" | |
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
h = self.pre(x0) * x_mask | |
h = self.enc(h, x_mask, g=g) | |
stats = self.post(h) * x_mask | |
if not self.mean_only: | |
m, logs = torch.split(stats, [self.half_channels] * 2, 1) | |
else: | |
m = stats | |
logs = torch.zeros_like(m) | |
if not reverse: | |
x1 = m + x1 * torch.exp(logs) * x_mask | |
x = torch.cat([x0, x1], 1) | |
logdet = torch.sum(logs, [1, 2]) | |
return x, logdet | |
else: | |
x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
x = torch.cat([x0, x1], 1) | |
return x | |
def remove_weight_norm(self): | |
"""Remove weight normalization from the module.""" | |
self.enc.remove_weight_norm() | |