Spaces:
Running
Running
import torch | |
class LayerNorm(torch.nn.Module): | |
"""Layer normalization module. | |
Args: | |
channels (int): Number of channels. | |
eps (float, optional): Epsilon value for numerical stability. Defaults to 1e-5. | |
""" | |
def __init__(self, channels: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.gamma = torch.nn.Parameter(torch.ones(channels)) | |
self.beta = torch.nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch_size, channels, time_steps). | |
""" | |
# Transpose to (batch_size, time_steps, channels) for layer_norm | |
x = x.transpose(1, -1) | |
x = torch.nn.functional.layer_norm( | |
x, (x.size(-1),), self.gamma, self.beta, self.eps | |
) | |
# Transpose back to (batch_size, channels, time_steps) | |
return x.transpose(1, -1) | |