Zero2x / App.py
Hyphonical's picture
✨ Add Motion Detection Functionality with ORB Algorithm
cc5a426
from spandrel import ModelLoader
import torch
from pathlib import Path
import gradio as App
import logging
import spaces
import time
import cv2
import os
from gradio import themes
from rich.console import Console
from rich.logging import RichHandler
from Scripts.SAD import GetDifferenceRectangles
from Scripts.ORB import DetectMotionWithOrb
# ============================== #
# Core Settings #
# ============================== #
Theme = themes.Citrus(
primary_hue='blue',
secondary_hue='blue',
radius_size=themes.sizes.radius_xxl
).set(
link_text_color='blue'
)
ModelDir = Path('./Models')
TempDir = Path('./Temp')
os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
ModelFileType = '.pth'
# ============================== #
# Logging #
# ============================== #
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
datefmt='[%X]',
handlers=[RichHandler(
console=Console(),
rich_tracebacks=True,
omit_repeated_times=False,
markup=True,
show_path=False,
)],
)
Logger = logging.getLogger('Zero2x')
logging.getLogger('httpx').setLevel(logging.WARNING)
# ============================== #
# Device Configuration #
# ============================== #
@spaces.GPU
def GetDeviceName():
Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Logger.info(f'πŸ§ͺ Using device: {str(Device).upper()}')
return Device
Device = GetDeviceName()
# ============================== #
# Utility Functions #
# ============================== #
def HumanizeSeconds(Seconds):
Hours = int(Seconds // 3600)
Minutes = int((Seconds % 3600) // 60)
Seconds = int(Seconds % 60)
if Hours > 0:
return f'{Hours}h {Minutes}m {Seconds}s'
elif Minutes > 0:
return f'{Minutes}m {Seconds}s'
else:
return f'{Seconds}s'
def HumanizedBytes(Size):
Units = ['B', 'KB', 'MB', 'GB', 'TB']
Index = 0
while Size >= 1024 and Index < len(Units) - 1:
Size /= 1024.0
Index += 1
return f'{Size:.2f} {Units[Index]}'
# ============================== #
# Main Processing Logic #
# ============================== #
class Upscaler:
def __init__(self):
pass
def ListModels(self):
Models = sorted(
[File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()]
)
Logger.info(f'πŸ“š Found {len(Models)} Models In Directory')
return Models
def LoadModel(self, ModelName):
torch.cuda.empty_cache()
Model = (
ModelLoader()
.load_from_file(ModelDir / (ModelName + ModelFileType))
.to(Device)
.eval()
)
Logger.info(f'πŸ€– Loaded Model {ModelName} Onto {str(Device).upper()}')
return Model
def UnloadModel(self):
if Device.type == 'cuda':
torch.cuda.empty_cache()
Logger.info('πŸ€– Model Unloaded Successfully')
def CleanUp(self):
self.UnloadModel()
Logger.info('🧹 Temporary Files Cleaned Up')
@spaces.GPU
def UpscaleFullFrame(self, Model, Frame):
FrameRgb = cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB)
FrameForTorch = FrameRgb.transpose(2, 0, 1)
FrameForTorch = torch.from_numpy(FrameForTorch).unsqueeze(0).to(Device).float() / 255.0
OutputFrame = Model(FrameForTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0
OutputFrame = cv2.cvtColor(OutputFrame.astype('uint8'), cv2.COLOR_RGB2BGR)
return OutputFrame
@spaces.GPU
def UpscaleRegions(self, Model, Frame, PrevFrame, UpscaledPrevFrame, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns):
DiffResult = GetDifferenceRectangles(
PrevFrame,
Frame,
Threshold=InputThreshold,
Rows=InputSegmentRows,
Columns=InputSegmentColumns,
Padding=InputPadding
)
SimilarityPercentage = DiffResult['SimilarPercentage']
Rectangles = DiffResult['Rectangles']
Cols = DiffResult['Columns']
Rows = DiffResult['Rows']
FrameHeight, FrameWidth = Frame.shape[:2]
SegmentWidth = FrameWidth // Cols
SegmentHeight = FrameHeight // Rows
UseRegions = False
RegionLog = 'πŸŸ₯'
if SimilarityPercentage > InputMinPercentage and len(Rectangles) < InputMaxRectangles:
UpscaleFactorY = UpscaledPrevFrame.shape[0] // FrameHeight
UpscaleFactorX = UpscaledPrevFrame.shape[1] // FrameWidth
OutputFrame = UpscaledPrevFrame.copy()
for X, Y, W, H in Rectangles:
X1 = X * SegmentWidth
Y1 = Y * SegmentHeight
X2 = FrameWidth if X + W == Cols else X1 + W * SegmentWidth
Y2 = FrameHeight if Y + H == Rows else Y1 + H * SegmentHeight
Region = Frame[Y1:Y2, X1:X2]
RegionRgb = cv2.cvtColor(Region, cv2.COLOR_BGR2RGB)
RegionTorch = torch.from_numpy(RegionRgb.transpose(2, 0, 1)).unsqueeze(0).to(Device).float() / 255.0
UpscaledRegion = Model(RegionTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0
UpscaledRegion = cv2.cvtColor(UpscaledRegion.astype('uint8'), cv2.COLOR_RGB2BGR)
RegionHeight, RegionWidth = Region.shape[:2]
UpscaledRegion = cv2.resize(UpscaledRegion, (RegionWidth * UpscaleFactorX, RegionHeight * UpscaleFactorY), interpolation=cv2.INTER_CUBIC)
UX1 = X1 * UpscaleFactorX
UY1 = Y1 * UpscaleFactorY
UX2 = UX1 + UpscaledRegion.shape[1]
UY2 = UY1 + UpscaledRegion.shape[0]
OutputFrame[UY1:UY2, UX1:UX2] = UpscaledRegion
RegionLog = '🟩'
UseRegions = True
else:
OutputFrame = self.UpscaleFullFrame(Model, Frame)
return OutputFrame, SimilarityPercentage, Rectangles, RegionLog, UseRegions
@spaces.GPU
def Process(self, InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold, Progress=App.Progress()):
if not InputVideo:
Logger.warning('❌ No Video Provided')
App.Warning('❌ No Video Provided')
return None, None
Progress(0, desc='βš™οΈ Loading Model')
Model = self.LoadModel(InputModel)
Logger.info(f'πŸ“Ό Processing Video: {Path(InputVideo).name}')
Progress(0, desc='πŸ“Ό Processing Video')
Video = cv2.VideoCapture(InputVideo)
FrameRate = Video.get(cv2.CAP_PROP_FPS)
FrameCount = int(Video.get(cv2.CAP_PROP_FRAME_COUNT))
Width = int(Video.get(cv2.CAP_PROP_FRAME_WIDTH))
Height = int(Video.get(cv2.CAP_PROP_FRAME_HEIGHT))
Logger.info(f'πŸ“ Video Properties: {FrameCount} Frames, {FrameRate} FPS, {Width}x{Height}')
PerFrameProgress = 1 / FrameCount
FrameProgress = 0.0
StartTime = time.time()
Times = []
CurrentFrameIndex = 0
PrevFrame = None
UpscaledPrevFrame = None
PartialUpscaleCount = 0
while True:
Ret, Frame = Video.read()
if not Ret:
break
CurrentFrameIndex += 1
ForceFull = False
CopyPrevUpscaled = False
if CurrentFrameIndex == 1 or not InputUseRegions:
ForceFull = True
PartialUpscaleCount = 0
elif PartialUpscaleCount >= InputFullFrameInterval:
ForceFull = True
PartialUpscaleCount = 0
if PrevFrame is not None:
IsMotion, TotalMagnitude, DirectionAngle = DetectMotionWithOrb(PrevFrame, Frame, InputMotionThreshold)
if IsMotion:
ForceFull = True
PartialUpscaleCount = 0
Logger.info(f'🟨 Frame {CurrentFrameIndex}: Motion Detected - Upscaling Full Frame')
if not ForceFull and PrevFrame is not None and UpscaledPrevFrame is not None:
DiffResult = GetDifferenceRectangles(
PrevFrame,
Frame,
Threshold=InputThreshold,
Rows=InputSegmentRows,
Columns=InputSegmentColumns,
Padding=InputPadding
)
SimilarityPercentage = DiffResult['SimilarPercentage']
if SimilarityPercentage == 100:
OutputFrame = UpscaledPrevFrame.copy()
RegionLog = '🟦'
UseRegions = False
Rectangles = []
Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: 100% Similar - Copied Previous Upscaled Frame')
FrameProgress += PerFrameProgress
Progress(FrameProgress, desc=f'πŸ“¦ Processed Frame {CurrentFrameIndex}/{FrameCount}')
cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameIndex:05d}.png', OutputFrame)
PrevFrame = Frame.copy()
UpscaledPrevFrame = OutputFrame.copy()
DeltaTime = time.time() - StartTime
Times.append(DeltaTime)
StartTime = time.time()
continue
if ForceFull:
OutputFrame = self.UpscaleFullFrame(Model, Frame)
SimilarityPercentage = 0
Rectangles = []
RegionLog = 'πŸŸ₯'
UseRegions = False
else:
OutputFrame, SimilarityPercentage, Rectangles, RegionLog, UseRegions = self.UpscaleRegions(
Model, Frame, PrevFrame, UpscaledPrevFrame, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns
)
if UseRegions:
PartialUpscaleCount += 1
else:
PartialUpscaleCount = 0
if Times:
AverageTime = sum(Times) / len(Times)
Eta = HumanizeSeconds((FrameCount - CurrentFrameIndex) * AverageTime)
else:
Eta = None
if UseRegions:
Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: {SimilarityPercentage:.2f}% Similar, {len(Rectangles)} Regions To Upscale')
else:
Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: Upscaling Full Frame')
Progress(FrameProgress, desc=f'πŸ“¦ Processed Frame {CurrentFrameIndex}/{FrameCount} - {Eta}')
cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameIndex:05d}.png', OutputFrame)
DeltaTime = time.time() - StartTime
Times.append(DeltaTime)
StartTime = time.time()
FrameProgress += PerFrameProgress
PrevFrame = Frame.copy()
UpscaledPrevFrame = OutputFrame.copy()
Progress(1, desc='πŸ“¦ Cleaning Up')
self.CleanUp()
return InputVideo, InputVideo
# ============================== #
# Streamlined UI #
# ============================== #
with App.Blocks(
title='Zero2x Video Upscaler', theme=Theme, delete_cache=(-1, 1800)
) as Interface:
App.Markdown('# 🎞️ Zero2x Video Upscaler')
with App.Accordion(label='βš™οΈ About Zero2x', open=False):
App.Markdown('''
**Zero2x** is a work-in-progress video upscaling tool that uses deep learning models to enhance your videos frame by frame.
This app leverages region-based difference detection to speed up processing and reduce unnecessary computation.
---
## ✨ Features
- **Multiple Upscaling Models:** Choose from a selection of pre-trained models for different styles and quality.
- **Region-Based Upscaling:** Only upscale parts of the frame that have changed, making processing faster and more memory-efficient.
- **Full Frame Upscaling:** Optionally upscale every frame in its entirety for maximum quality.
- **Customizable Settings:** Fine-tune thresholds, padding, and region detection for your specific needs.
- **Progress Tracking:** See estimated time remaining and per-frame progress.
- **Downloadable Results:** Download your upscaled video when processing is complete.
---
## πŸ§‘β€πŸ”¬ Technique
This app uses the Segmented Absolute Differences (SAD) (Created by me) program to compare each frame with the previous one.
If only small regions have changed, only those regions are upscaled using the selected model.
If the whole frame is different, the entire frame is upscaled.
This hybrid approach balances speed and quality.
---
## 🚧 Work In Progress
- More models and settings will be added soon.
- Some features may be experimental or incomplete.
- Feedback and suggestions are welcome!
- The quality of the upscaled video may vary depending on the model and settings used.
---
**Tip:** If you encounter CUDA out-of-memory errors, try increasing the segment grid size or lowering the region count.
**Note:** The reason i named this project Zero2x is because i was inspired by Video2x, but i wanted my own version with a different approach.
It is running on HuggingFace's ZeroGPU hardware, which is why i came up with the name.
''')
with App.Row():
with App.Column():
with App.Group():
InputVideo = App.Video(
label='Input Video', sources=['upload'], height=300
)
ModelList = Upscaler().ListModels()
ModelNames = [Path(Model).stem for Model in ModelList]
InputModel = App.Dropdown(
choices=ModelNames,
label='Select Model',
value=ModelNames[0],
)
with App.Accordion(label='βš™οΈ Advanced Settings', open=False):
with App.Accordion(label='πŸ“œ Settings Explained', open=False):
App.Markdown('''
- **Use Regions:** When enabled, only changed areas between frames are upscaled. This is faster but may miss subtle changes.
- **Threshold:** Controls how sensitive the difference detection is. I found high values to introduce unmatching regions, be careful.
- **Padding:** Adds extra pixels around detected regions to include out of bounds pixels.
- **Min Percentage:** If the similarity between frames is above this value, only regions are upscaled; otherwise, the full frame is upscaled.
- **Max Rectangles:** Limits the number of regions to process per frame for performance.
- **Segment Rows/Columns:** Controls the grid size for region detection. More segments allow finer detection but may increase processing time. Uses less Vram when used.
- **Full Frame Interval:** Forces a full-frame upscale every N frames. Set to 1 to always upscale the full frame. This is to prevent regions from glitching out.
- **Motion Threshold:** Controls how sensitive the motion detection is. Upscaling motion frames increases faulty regions. Lower = More strict
''')
with App.Group():
InputUseRegions = App.Checkbox(
label='Use Regions',
value=False,
info='Use regions to upscale only the different parts of the video (⚑️ Experimental, Faster)',
interactive=True
)
InputThreshold = App.Slider(
label='Threshold',
value=2,
minimum=0,
maximum=10,
step=0.5,
info='Threshold for the SAD algorithm to detect different regions',
interactive=False
)
InputPadding = App.Slider(
label='Padding',
value=1,
minimum=0,
maximum=5,
step=1,
info='Extra padding to include neighboring pixels in the SAD algorithm',
interactive=False
)
InputMinPercentage = App.Slider(
label='Min Percentage',
value=50,
minimum=0,
maximum=100,
step=1,
info='Minimum percentage of similarity to consider upscaling the full frame',
interactive=False
)
InputMaxRectangles = App.Slider(
label='Max Rectangles',
value=10,
minimum=1,
maximum=16,
step=1,
info='Maximum number of rectangles to consider upscaling the full frame',
interactive=False
)
with App.Row():
InputSegmentRows = App.Slider(
label='Segment Rows',
value=32,
minimum=1,
maximum=64,
step=1,
info='Number of rows to segment the video into for processing',
interactive=False
)
InputSegmentColumns = App.Slider(
label='Segment Columns',
value=48,
minimum=1,
maximum=64,
step=1,
info='Number of columns to segment the video into for processing',
interactive=False
)
InputFullFrameInterval = App.Slider(
label='Full Frame Interval',
value=5,
minimum=1,
maximum=100,
step=1,
info='Force a full-frame upscale every N frames (set to 1 to always upscale full frame)',
interactive=False
)
InputMotionThreshold = App.Slider(
label='Motion Threshold',
value=1,
minimum=0,
maximum=10,
step=0.5,
info='Threshold for the motion detection algorithm to consider a frame as different',
interactive=False
)
SubmitButton = App.Button('πŸš€ Upscale Video')
with App.Column(show_progress=True):
with App.Group():
OutputVideo = App.Video(
label='Output Video', height=300, interactive=False, format=None
)
OutputDownload = App.DownloadButton(
label='πŸ’Ύ Download Video', interactive=False
)
def ToggleRegionInputs(UseRegions):
return (
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions)
)
InputUseRegions.change(
fn=ToggleRegionInputs,
inputs=[InputUseRegions],
outputs=[InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold],
)
SubmitButton.click(
fn=Upscaler().Process,
inputs=[
InputVideo,
InputModel,
InputUseRegions,
InputThreshold,
InputMinPercentage,
InputMaxRectangles,
InputPadding,
InputSegmentRows,
InputSegmentColumns,
InputFullFrameInterval,
InputMotionThreshold
],
outputs=[OutputVideo, OutputDownload],
)
if __name__ == '__main__':
os.makedirs(ModelDir, exist_ok=True)
os.makedirs(TempDir, exist_ok=True)
Logger.info('πŸš€ Starting Video Upscaler')
Interface.launch(pwa=True)