from spandrel import ModelLoader import torch from pathlib import Path import gradio as App import logging import spaces import time import cv2 import os from gradio import themes from rich.console import Console from rich.logging import RichHandler from Scripts.SAD import GetDifferenceRectangles from Scripts.ORB import DetectMotionWithOrb # ============================== # # Core Settings # # ============================== # Theme = themes.Citrus( primary_hue='blue', secondary_hue='blue', radius_size=themes.sizes.radius_xxl ).set( link_text_color='blue' ) ModelDir = Path('./Models') TempDir = Path('./Temp') os.environ['GRADIO_TEMP_DIR'] = str(TempDir) ModelFileType = '.pth' # ============================== # # Logging # # ============================== # logging.basicConfig( level=logging.INFO, format='%(message)s', datefmt='[%X]', handlers=[RichHandler( console=Console(), rich_tracebacks=True, omit_repeated_times=False, markup=True, show_path=False, )], ) Logger = logging.getLogger('Zero2x') logging.getLogger('httpx').setLevel(logging.WARNING) # ============================== # # Device Configuration # # ============================== # @spaces.GPU def GetDeviceName(): Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') Logger.info(f'๐Ÿงช Using device: {str(Device).upper()}') return Device Device = GetDeviceName() # ============================== # # Utility Functions # # ============================== # def HumanizeSeconds(Seconds): Hours = int(Seconds // 3600) Minutes = int((Seconds % 3600) // 60) Seconds = int(Seconds % 60) if Hours > 0: return f'{Hours}h {Minutes}m {Seconds}s' elif Minutes > 0: return f'{Minutes}m {Seconds}s' else: return f'{Seconds}s' def HumanizedBytes(Size): Units = ['B', 'KB', 'MB', 'GB', 'TB'] Index = 0 while Size >= 1024 and Index < len(Units) - 1: Size /= 1024.0 Index += 1 return f'{Size:.2f} {Units[Index]}' # ============================== # # Main Processing Logic # # ============================== # class Upscaler: def __init__(self): pass def ListModels(self): Models = sorted( [File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()] ) Logger.info(f'๐Ÿ“š Found {len(Models)} Models In Directory') return Models def LoadModel(self, ModelName): torch.cuda.empty_cache() Model = ( ModelLoader() .load_from_file(ModelDir / (ModelName + ModelFileType)) .to(Device) .eval() ) Logger.info(f'๐Ÿค– Loaded Model {ModelName} Onto {str(Device).upper()}') return Model def UnloadModel(self): if Device.type == 'cuda': torch.cuda.empty_cache() Logger.info('๐Ÿค– Model Unloaded Successfully') def CleanUp(self): self.UnloadModel() Logger.info('๐Ÿงน Temporary Files Cleaned Up') @spaces.GPU def UpscaleFullFrame(self, Model, Frame): FrameRgb = cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB) FrameForTorch = FrameRgb.transpose(2, 0, 1) FrameForTorch = torch.from_numpy(FrameForTorch).unsqueeze(0).to(Device).float() / 255.0 OutputFrame = Model(FrameForTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 OutputFrame = cv2.cvtColor(OutputFrame.astype('uint8'), cv2.COLOR_RGB2BGR) return OutputFrame @spaces.GPU def UpscaleRegions(self, Model, Frame, PrevFrame, UpscaledPrevFrame, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns): DiffResult = GetDifferenceRectangles( PrevFrame, Frame, Threshold=InputThreshold, Rows=InputSegmentRows, Columns=InputSegmentColumns, Padding=InputPadding ) SimilarityPercentage = DiffResult['SimilarPercentage'] Rectangles = DiffResult['Rectangles'] Cols = DiffResult['Columns'] Rows = DiffResult['Rows'] FrameHeight, FrameWidth = Frame.shape[:2] SegmentWidth = FrameWidth // Cols SegmentHeight = FrameHeight // Rows UseRegions = False RegionLog = '๐ŸŸฅ' if SimilarityPercentage > InputMinPercentage and len(Rectangles) < InputMaxRectangles: UpscaleFactorY = UpscaledPrevFrame.shape[0] // FrameHeight UpscaleFactorX = UpscaledPrevFrame.shape[1] // FrameWidth OutputFrame = UpscaledPrevFrame.copy() for X, Y, W, H in Rectangles: X1 = X * SegmentWidth Y1 = Y * SegmentHeight X2 = FrameWidth if X + W == Cols else X1 + W * SegmentWidth Y2 = FrameHeight if Y + H == Rows else Y1 + H * SegmentHeight Region = Frame[Y1:Y2, X1:X2] RegionRgb = cv2.cvtColor(Region, cv2.COLOR_BGR2RGB) RegionTorch = torch.from_numpy(RegionRgb.transpose(2, 0, 1)).unsqueeze(0).to(Device).float() / 255.0 UpscaledRegion = Model(RegionTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 UpscaledRegion = cv2.cvtColor(UpscaledRegion.astype('uint8'), cv2.COLOR_RGB2BGR) RegionHeight, RegionWidth = Region.shape[:2] UpscaledRegion = cv2.resize(UpscaledRegion, (RegionWidth * UpscaleFactorX, RegionHeight * UpscaleFactorY), interpolation=cv2.INTER_CUBIC) UX1 = X1 * UpscaleFactorX UY1 = Y1 * UpscaleFactorY UX2 = UX1 + UpscaledRegion.shape[1] UY2 = UY1 + UpscaledRegion.shape[0] OutputFrame[UY1:UY2, UX1:UX2] = UpscaledRegion RegionLog = '๐ŸŸฉ' UseRegions = True else: OutputFrame = self.UpscaleFullFrame(Model, Frame) return OutputFrame, SimilarityPercentage, Rectangles, RegionLog, UseRegions @spaces.GPU def Process(self, InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold, Progress=App.Progress()): if not InputVideo: Logger.warning('โŒ No Video Provided') App.Warning('โŒ No Video Provided') return None, None Progress(0, desc='โš™๏ธ Loading Model') Model = self.LoadModel(InputModel) Logger.info(f'๐Ÿ“ผ Processing Video: {Path(InputVideo).name}') Progress(0, desc='๐Ÿ“ผ Processing Video') Video = cv2.VideoCapture(InputVideo) FrameRate = Video.get(cv2.CAP_PROP_FPS) FrameCount = int(Video.get(cv2.CAP_PROP_FRAME_COUNT)) Width = int(Video.get(cv2.CAP_PROP_FRAME_WIDTH)) Height = int(Video.get(cv2.CAP_PROP_FRAME_HEIGHT)) Logger.info(f'๐Ÿ“ Video Properties: {FrameCount} Frames, {FrameRate} FPS, {Width}x{Height}') PerFrameProgress = 1 / FrameCount FrameProgress = 0.0 StartTime = time.time() Times = [] CurrentFrameIndex = 0 PrevFrame = None UpscaledPrevFrame = None PartialUpscaleCount = 0 while True: Ret, Frame = Video.read() if not Ret: break CurrentFrameIndex += 1 ForceFull = False CopyPrevUpscaled = False if CurrentFrameIndex == 1 or not InputUseRegions: ForceFull = True PartialUpscaleCount = 0 elif PartialUpscaleCount >= InputFullFrameInterval: ForceFull = True PartialUpscaleCount = 0 if PrevFrame is not None: IsMotion, TotalMagnitude, DirectionAngle = DetectMotionWithOrb(PrevFrame, Frame, InputMotionThreshold) if IsMotion: ForceFull = True PartialUpscaleCount = 0 Logger.info(f'๐ŸŸจ Frame {CurrentFrameIndex}: Motion Detected - Upscaling Full Frame') if not ForceFull and PrevFrame is not None and UpscaledPrevFrame is not None: DiffResult = GetDifferenceRectangles( PrevFrame, Frame, Threshold=InputThreshold, Rows=InputSegmentRows, Columns=InputSegmentColumns, Padding=InputPadding ) SimilarityPercentage = DiffResult['SimilarPercentage'] if SimilarityPercentage == 100: OutputFrame = UpscaledPrevFrame.copy() RegionLog = '๐ŸŸฆ' UseRegions = False Rectangles = [] Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: 100% Similar - Copied Previous Upscaled Frame') FrameProgress += PerFrameProgress Progress(FrameProgress, desc=f'๐Ÿ“ฆ Processed Frame {CurrentFrameIndex}/{FrameCount}') cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameIndex:05d}.png', OutputFrame) PrevFrame = Frame.copy() UpscaledPrevFrame = OutputFrame.copy() DeltaTime = time.time() - StartTime Times.append(DeltaTime) StartTime = time.time() continue if ForceFull: OutputFrame = self.UpscaleFullFrame(Model, Frame) SimilarityPercentage = 0 Rectangles = [] RegionLog = '๐ŸŸฅ' UseRegions = False else: OutputFrame, SimilarityPercentage, Rectangles, RegionLog, UseRegions = self.UpscaleRegions( Model, Frame, PrevFrame, UpscaledPrevFrame, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns ) if UseRegions: PartialUpscaleCount += 1 else: PartialUpscaleCount = 0 if Times: AverageTime = sum(Times) / len(Times) Eta = HumanizeSeconds((FrameCount - CurrentFrameIndex) * AverageTime) else: Eta = None if UseRegions: Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: {SimilarityPercentage:.2f}% Similar, {len(Rectangles)} Regions To Upscale') else: Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: Upscaling Full Frame') Progress(FrameProgress, desc=f'๐Ÿ“ฆ Processed Frame {CurrentFrameIndex}/{FrameCount} - {Eta}') cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameIndex:05d}.png', OutputFrame) DeltaTime = time.time() - StartTime Times.append(DeltaTime) StartTime = time.time() FrameProgress += PerFrameProgress PrevFrame = Frame.copy() UpscaledPrevFrame = OutputFrame.copy() Progress(1, desc='๐Ÿ“ฆ Cleaning Up') self.CleanUp() return InputVideo, InputVideo # ============================== # # Streamlined UI # # ============================== # with App.Blocks( title='Zero2x Video Upscaler', theme=Theme, delete_cache=(-1, 1800) ) as Interface: App.Markdown('# ๐ŸŽž๏ธ Zero2x Video Upscaler') with App.Accordion(label='โš™๏ธ About Zero2x', open=False): App.Markdown(''' **Zero2x** is a work-in-progress video upscaling tool that uses deep learning models to enhance your videos frame by frame. This app leverages region-based difference detection to speed up processing and reduce unnecessary computation. --- ## โœจ Features - **Multiple Upscaling Models:** Choose from a selection of pre-trained models for different styles and quality. - **Region-Based Upscaling:** Only upscale parts of the frame that have changed, making processing faster and more memory-efficient. - **Full Frame Upscaling:** Optionally upscale every frame in its entirety for maximum quality. - **Customizable Settings:** Fine-tune thresholds, padding, and region detection for your specific needs. - **Progress Tracking:** See estimated time remaining and per-frame progress. - **Downloadable Results:** Download your upscaled video when processing is complete. --- ## ๐Ÿง‘โ€๐Ÿ”ฌ Technique This app uses the Segmented Absolute Differences (SAD) (Created by me) program to compare each frame with the previous one. If only small regions have changed, only those regions are upscaled using the selected model. If the whole frame is different, the entire frame is upscaled. This hybrid approach balances speed and quality. --- ## ๐Ÿšง Work In Progress - More models and settings will be added soon. - Some features may be experimental or incomplete. - Feedback and suggestions are welcome! - The quality of the upscaled video may vary depending on the model and settings used. --- **Tip:** If you encounter CUDA out-of-memory errors, try increasing the segment grid size or lowering the region count. **Note:** The reason i named this project Zero2x is because i was inspired by Video2x, but i wanted my own version with a different approach. It is running on HuggingFace's ZeroGPU hardware, which is why i came up with the name. ''') with App.Row(): with App.Column(): with App.Group(): InputVideo = App.Video( label='Input Video', sources=['upload'], height=300 ) ModelList = Upscaler().ListModels() ModelNames = [Path(Model).stem for Model in ModelList] InputModel = App.Dropdown( choices=ModelNames, label='Select Model', value=ModelNames[0], ) with App.Accordion(label='โš™๏ธ Advanced Settings', open=False): with App.Accordion(label='๐Ÿ“œ Settings Explained', open=False): App.Markdown(''' - **Use Regions:** When enabled, only changed areas between frames are upscaled. This is faster but may miss subtle changes. - **Threshold:** Controls how sensitive the difference detection is. I found high values to introduce unmatching regions, be careful. - **Padding:** Adds extra pixels around detected regions to include out of bounds pixels. - **Min Percentage:** If the similarity between frames is above this value, only regions are upscaled; otherwise, the full frame is upscaled. - **Max Rectangles:** Limits the number of regions to process per frame for performance. - **Segment Rows/Columns:** Controls the grid size for region detection. More segments allow finer detection but may increase processing time. Uses less Vram when used. - **Full Frame Interval:** Forces a full-frame upscale every N frames. Set to 1 to always upscale the full frame. This is to prevent regions from glitching out. - **Motion Threshold:** Controls how sensitive the motion detection is. Upscaling motion frames increases faulty regions. Lower = More strict ''') with App.Group(): InputUseRegions = App.Checkbox( label='Use Regions', value=False, info='Use regions to upscale only the different parts of the video (โšก๏ธ Experimental, Faster)', interactive=True ) InputThreshold = App.Slider( label='Threshold', value=2, minimum=0, maximum=10, step=0.5, info='Threshold for the SAD algorithm to detect different regions', interactive=False ) InputPadding = App.Slider( label='Padding', value=1, minimum=0, maximum=5, step=1, info='Extra padding to include neighboring pixels in the SAD algorithm', interactive=False ) InputMinPercentage = App.Slider( label='Min Percentage', value=50, minimum=0, maximum=100, step=1, info='Minimum percentage of similarity to consider upscaling the full frame', interactive=False ) InputMaxRectangles = App.Slider( label='Max Rectangles', value=10, minimum=1, maximum=16, step=1, info='Maximum number of rectangles to consider upscaling the full frame', interactive=False ) with App.Row(): InputSegmentRows = App.Slider( label='Segment Rows', value=32, minimum=1, maximum=64, step=1, info='Number of rows to segment the video into for processing', interactive=False ) InputSegmentColumns = App.Slider( label='Segment Columns', value=48, minimum=1, maximum=64, step=1, info='Number of columns to segment the video into for processing', interactive=False ) InputFullFrameInterval = App.Slider( label='Full Frame Interval', value=5, minimum=1, maximum=100, step=1, info='Force a full-frame upscale every N frames (set to 1 to always upscale full frame)', interactive=False ) InputMotionThreshold = App.Slider( label='Motion Threshold', value=1, minimum=0, maximum=10, step=0.5, info='Threshold for the motion detection algorithm to consider a frame as different', interactive=False ) SubmitButton = App.Button('๐Ÿš€ Upscale Video') with App.Column(show_progress=True): with App.Group(): OutputVideo = App.Video( label='Output Video', height=300, interactive=False, format=None ) OutputDownload = App.DownloadButton( label='๐Ÿ’พ Download Video', interactive=False ) def ToggleRegionInputs(UseRegions): return ( App.update(interactive=UseRegions), App.update(interactive=UseRegions), App.update(interactive=UseRegions), App.update(interactive=UseRegions), App.update(interactive=UseRegions), App.update(interactive=UseRegions), App.update(interactive=UseRegions), App.update(interactive=UseRegions) ) InputUseRegions.change( fn=ToggleRegionInputs, inputs=[InputUseRegions], outputs=[InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold], ) SubmitButton.click( fn=Upscaler().Process, inputs=[ InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold ], outputs=[OutputVideo, OutputDownload], ) if __name__ == '__main__': os.makedirs(ModelDir, exist_ok=True) os.makedirs(TempDir, exist_ok=True) Logger.info('๐Ÿš€ Starting Video Upscaler') Interface.launch(pwa=True)