|
|
|
|
|
import os |
|
from importlib.resources import files |
|
|
|
import hydra |
|
|
|
from f5_tts.model import CFM, DiT, Trainer, UNetT |
|
from f5_tts.model.dataset import load_dataset |
|
from f5_tts.model.utils import get_tokenizer |
|
|
|
os.chdir(str(files("f5_tts").joinpath("../.."))) |
|
|
|
|
|
@hydra.main(version_base="1.3", config_path=str(files("f5_tts").joinpath("configs")), config_name=None) |
|
def main(cfg): |
|
tokenizer = cfg.model.tokenizer |
|
mel_spec_type = cfg.model.mel_spec.mel_spec_type |
|
exp_name = f"{cfg.model.name}_{mel_spec_type}_{cfg.model.tokenizer}_{cfg.datasets.name}" |
|
|
|
|
|
if tokenizer != "custom": |
|
tokenizer_path = cfg.datasets.name |
|
else: |
|
tokenizer_path = cfg.model.tokenizer_path |
|
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) |
|
|
|
|
|
if "F5TTS" in cfg.model.name: |
|
model_cls = DiT |
|
elif "E2TTS" in cfg.model.name: |
|
model_cls = UNetT |
|
wandb_resume_id = None |
|
|
|
model = CFM( |
|
transformer=model_cls(**cfg.model.arch, text_num_embeds=vocab_size, mel_dim=cfg.model.mel_spec.n_mel_channels), |
|
mel_spec_kwargs=cfg.model.mel_spec, |
|
vocab_char_map=vocab_char_map, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model, |
|
epochs=cfg.optim.epochs, |
|
learning_rate=cfg.optim.learning_rate, |
|
num_warmup_updates=cfg.optim.num_warmup_updates, |
|
save_per_updates=cfg.ckpts.save_per_updates, |
|
checkpoint_path=str(files("f5_tts").joinpath(f"../../{cfg.ckpts.save_dir}")), |
|
batch_size=cfg.datasets.batch_size_per_gpu, |
|
batch_size_type=cfg.datasets.batch_size_type, |
|
max_samples=cfg.datasets.max_samples, |
|
grad_accumulation_steps=cfg.optim.grad_accumulation_steps, |
|
max_grad_norm=cfg.optim.max_grad_norm, |
|
logger=cfg.ckpts.logger, |
|
wandb_project="CFM-TTS", |
|
wandb_run_name=exp_name, |
|
wandb_resume_id=wandb_resume_id, |
|
last_per_steps=cfg.ckpts.last_per_steps, |
|
log_samples=True, |
|
bnb_optimizer=cfg.optim.bnb_optimizer, |
|
mel_spec_type=mel_spec_type, |
|
is_local_vocoder=cfg.model.vocoder.is_local, |
|
local_vocoder_path=cfg.model.vocoder.local_path, |
|
) |
|
|
|
train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec) |
|
trainer.train( |
|
train_dataset, |
|
num_workers=cfg.datasets.num_workers, |
|
resumable_with_seed=666, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|