Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import onnxruntime | |
from PIL import Image | |
class_names = [100, 120, 20, 30, 40, 15, 50, 60, 70, 80] | |
def preprocess(img, input_size, swap=(2, 0, 1)): | |
if len(img.shape) == 3: | |
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 | |
else: | |
padded_img = np.ones(input_size, dtype=np.uint8) * 114 | |
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) | |
resized_img = cv2.resize( | |
img, | |
(int(img.shape[1] * r), int(img.shape[0] * r)), | |
interpolation=cv2.INTER_LINEAR, | |
).astype(np.uint8) | |
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img | |
padded_img = padded_img.transpose(swap) | |
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) | |
return padded_img, r | |
def nms(boxes, scores, nms_thr): | |
"""Single class NMS implemented in Numpy.""" | |
x1 = boxes[:, 0] | |
y1 = boxes[:, 1] | |
x2 = boxes[:, 2] | |
y2 = boxes[:, 3] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(i) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1 + 1) | |
h = np.maximum(0.0, yy2 - yy1 + 1) | |
inter = w * h | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(ovr <= nms_thr)[0] | |
order = order[inds + 1] | |
return keep | |
def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): | |
"""Multiclass NMS implemented in Numpy""" | |
if class_agnostic: | |
nms_method = multiclass_nms_class_agnostic | |
else: | |
nms_method = multiclass_nms_class_aware | |
return nms_method(boxes, scores, nms_thr, score_thr) | |
def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): | |
"""Multiclass NMS implemented in Numpy. Class-aware version.""" | |
final_dets = [] | |
num_classes = scores.shape[1] | |
for cls_ind in range(num_classes): | |
cls_scores = scores[:, cls_ind] | |
valid_score_mask = cls_scores > score_thr | |
if valid_score_mask.sum() == 0: | |
continue | |
else: | |
valid_scores = cls_scores[valid_score_mask] | |
valid_boxes = boxes[valid_score_mask] | |
keep = nms(valid_boxes, valid_scores, nms_thr) | |
if len(keep) > 0: | |
cls_inds = np.ones((len(keep), 1)) * cls_ind | |
dets = np.concatenate( | |
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 | |
) | |
final_dets.append(dets) | |
if len(final_dets) == 0: | |
return None | |
return np.concatenate(final_dets, 0) | |
def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): | |
"""Multiclass NMS implemented in Numpy. Class-agnostic version.""" | |
cls_inds = scores.argmax(1) | |
cls_scores = scores[np.arange(len(cls_inds)), cls_inds] | |
valid_score_mask = cls_scores > score_thr | |
if valid_score_mask.sum() == 0: | |
return None | |
valid_scores = cls_scores[valid_score_mask] | |
valid_boxes = boxes[valid_score_mask] | |
valid_cls_inds = cls_inds[valid_score_mask] | |
keep = nms(valid_boxes, valid_scores, nms_thr) | |
if keep: | |
dets = np.concatenate( | |
[valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 | |
) | |
return dets | |
def demo_postprocess(outputs, img_size, p6=False): | |
grids = [] | |
expanded_strides = [] | |
if not p6: | |
strides = [8, 16, 32] | |
else: | |
strides = [8, 16, 32, 64] | |
hsizes = [img_size[0] // stride for stride in strides] | |
wsizes = [img_size[1] // stride for stride in strides] | |
for hsize, wsize, stride in zip(hsizes, wsizes, strides): | |
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) | |
grid = np.stack((xv, yv), 2).reshape(1, -1, 2) | |
grids.append(grid) | |
shape = grid.shape[:2] | |
expanded_strides.append(np.full((*shape, 1), stride)) | |
grids = np.concatenate(grids, 1) | |
expanded_strides = np.concatenate(expanded_strides, 1) | |
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides | |
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides | |
return outputs | |
def prediction(img): | |
img, ratio = preprocess(img, [640, 640]) | |
session = onnxruntime.InferenceSession("yolox_s.onnx") | |
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} | |
output = session.run(None, ort_inputs) | |
predictions = demo_postprocess(output[0], [640, 640])[0] | |
boxes = predictions[:, :4] | |
scores = predictions[:, 4:5] * predictions[:, 5:] | |
boxes_xyxy = np.ones_like(boxes) | |
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. | |
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. | |
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. | |
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. | |
boxes_xyxy /= ratio | |
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) | |
if dets is not None: | |
boxes, cls_ids, score = dets[:, :4], dets[:, 4], dets[:, 5] | |
return boxes, cls_ids, score | |
def vis(img, boxes, scores, cls_ids, conf=0.5): | |
for i in range(len(boxes)): | |
box = boxes[i] | |
cls_id = int(cls_ids[i]) | |
score = scores[i] | |
if score < conf: | |
continue | |
x0 = int(box[0]) | |
y0 = int(box[1]) | |
x1 = int(box[2]) | |
y1 = int(box[3]) | |
color = (0, 0, 255) | |
text = '{} km/h:{:.1f}%'.format(class_names[cls_id], score * 100) | |
txt_color = (255, 255, 255) | |
font = cv2.FONT_HERSHEY_DUPLEX | |
txt_size = cv2.getTextSize(text, font, 0.6, 1)[0] | |
cv2.rectangle(img, (x0, y0), (x1, y1), color, 2) | |
txt_bk_color = (0, 0, 255) | |
cv2.rectangle( | |
img, | |
(x0, y0 - 1), | |
(x0 + txt_size[0] + 1, y0 - int(1.5*txt_size[1])), | |
txt_bk_color, | |
-1 | |
) | |
cv2.putText(img, text, (x0, y0-int(0.5*txt_size[1])), font, 0.6, txt_color, thickness=1) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return Image.fromarray(img) |