import cv2 import numpy as np import onnxruntime from PIL import Image class_names = [100, 120, 20, 30, 40, 15, 50, 60, 70, 80] def preprocess(img, input_size, swap=(2, 0, 1)): if len(img.shape) == 3: padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 else: padded_img = np.ones(input_size, dtype=np.uint8) * 114 r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img.transpose(swap) padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) return padded_img, r def nms(boxes, scores, nms_thr): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): """Multiclass NMS implemented in Numpy""" if class_agnostic: nms_method = multiclass_nms_class_agnostic else: nms_method = multiclass_nms_class_aware return nms_method(boxes, scores, nms_thr, score_thr) def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-aware version.""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 ) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0) def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-agnostic version.""" cls_inds = scores.argmax(1) cls_scores = scores[np.arange(len(cls_inds)), cls_inds] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: return None valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] valid_cls_inds = cls_inds[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if keep: dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 ) return dets def demo_postprocess(outputs, img_size, p6=False): grids = [] expanded_strides = [] if not p6: strides = [8, 16, 32] else: strides = [8, 16, 32, 64] hsizes = [img_size[0] // stride for stride in strides] wsizes = [img_size[1] // stride for stride in strides] for hsize, wsize, stride in zip(hsizes, wsizes, strides): xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] expanded_strides.append(np.full((*shape, 1), stride)) grids = np.concatenate(grids, 1) expanded_strides = np.concatenate(expanded_strides, 1) outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides return outputs def prediction(img): img, ratio = preprocess(img, [640, 640]) session = onnxruntime.InferenceSession("yolox_s.onnx") ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} output = session.run(None, ort_inputs) predictions = demo_postprocess(output[0], [640, 640])[0] boxes = predictions[:, :4] scores = predictions[:, 4:5] * predictions[:, 5:] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. boxes_xyxy /= ratio dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) if dets is not None: boxes, cls_ids, score = dets[:, :4], dets[:, 4], dets[:, 5] return boxes, cls_ids, score def vis(img, boxes, scores, cls_ids, conf=0.5): for i in range(len(boxes)): box = boxes[i] cls_id = int(cls_ids[i]) score = scores[i] if score < conf: continue x0 = int(box[0]) y0 = int(box[1]) x1 = int(box[2]) y1 = int(box[3]) color = (0, 0, 255) text = '{} km/h:{:.1f}%'.format(class_names[cls_id], score * 100) txt_color = (255, 255, 255) font = cv2.FONT_HERSHEY_DUPLEX txt_size = cv2.getTextSize(text, font, 0.6, 1)[0] cv2.rectangle(img, (x0, y0), (x1, y1), color, 2) txt_bk_color = (0, 0, 255) cv2.rectangle( img, (x0, y0 - 1), (x0 + txt_size[0] + 1, y0 - int(1.5*txt_size[1])), txt_bk_color, -1 ) cv2.putText(img, text, (x0, y0-int(0.5*txt_size[1])), font, 0.6, txt_color, thickness=1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return Image.fromarray(img)