Fix indentation
Browse files- app/src/index.html +148 -112
app/src/index.html
CHANGED
@@ -48,6 +48,7 @@
|
|
48 |
<d-contents>
|
49 |
</d-contents>
|
50 |
|
|
|
51 |
<p>Over the last few years, the scaling of <em><strong>train-time compute</strong></em> has dominated the progress of large language models (LLMs).<d-footnote>Here, train-time compute refers to increasing model size, dataset size, and compute budgets in line with <a href="https://huggingface.co/papers/2001.08361">scaling laws</a>.</d-footnote>Although this paradigm has proven to be remarkably effective, the resources needed to pretrain ever larger models are becoming prohibitively expensive, with <a href="https://youtu.be/WXhikNA5PIc?feature=shared">billion-dollar clusters</a> already on the horizon.<d-footnote>Aside from compute resources, Ilya Sutskever has made the <a href="https://www.youtube.com/watch?feature=shared&t=475&v=1yvBqasHLZs">provocative analogy</a> that pretraining data is the “fossil fuel of AI” and that pretraining as we know it will end once this resource is exhausted in the near future.</d-footnote> This trend has sparked significant interest in a complementary approach: <em><strong>test-time compute scaling</strong></em>. Rather than relying on ever-larger pretraining budgets, test-time methods use dynamic inference strategies that allow models to “think longer” on harder problems. A prominent example is <a href="https://openai.com/index/learning-to-reason-with-llms/">OpenAI’s o1 model</a>, which shows consistent improvement on difficult math problems as one increases the amount of test-time compute:</p>
|
52 |
|
53 |
<figure id="1581384e-bcac-805f-8c2b-dff4509f45cb" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/compute.png.webp"><img style="width:672px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/compute.png.webp"/></a></figure>
|
@@ -68,6 +69,7 @@
|
|
68 |
|
69 |
<p id="15c1384e-bcac-804f-a4d5-c8f760f28096" class="">In the rest of this blog post, we’ll dive deep into the ingredients behind results like this one and walk you through practical strategies for implementing test-time compute scaling.</p>
|
70 |
|
|
|
71 |
<h2 id="1591384e-bcac-809f-b7ce-d414b4c0df4e" class="">Strategies for test-time compute scaling</h2>
|
72 |
|
73 |
<p id="1591384e-bcac-8021-a784-d3340af0adb4" class="">There are two main strategies for scaling test-time compute:</p>
|
@@ -109,6 +111,7 @@
|
|
109 |
<li><strong>Model:</strong> We used <code>meta-llama/Llama-3.2-1B-Instruct</code> as our primary model for scaling test-time compute. With 1B parameters, its lightweight nature enables fast iterations, and its unsaturated performance on math benchmarks makes it an ideal choice for highlighting the benefits of scaling.</li>
|
110 |
<li><strong>Process reward model: </strong>To guide our search strategies, we used <code>RLHFlow/Llama3.1-8B-PRM-Deepseek-Data</code>, an 8B reward model that has been trained using <em>process supervision</em>. Process supervision is a training approach where models receive feedback on each step of their reasoning process, not just the final outcome. We picked this model since it belongs to the same model family as our policy and gave better results than other PRMs like <a href="https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm">Math-Shepherd</a> we tested in this weight class.</li>
|
111 |
<li><strong>Dataset: </strong>We evaluated on the<a href="https://huggingface.co/datasets/HuggingFaceH4/MATH-500"> MATH-500 subset</a> of the <a href="https://huggingface.co/papers/2103.03874">MATH benchmark</a>, a dataset released by OpenAI as part of their <a href="https://huggingface.co/papers/2305.20050">research</a> on process supervision. These math problems span seven subjects and are challenging for both humans and most LLMs. Take a look at the dataset viewer below to get a taste for the problem difficulty!</li>
|
|
|
112 |
|
113 |
<iframe src="https://huggingface.co/datasets/HuggingFaceH4/MATH-500/embed/viewer/default/test" frameborder="0" width="100%" height="560px"></iframe>
|
114 |
|
@@ -116,167 +119,200 @@
|
|
116 |
|
117 |
<p>To warmup, we’ll begin with a simple baseline and progressively incorporate additional techniques to improve performance.</p>
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
<
|
122 |
|
|
|
|
|
123 |
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="15c1384e-bcac-8011-aee6-d7c433df8b5f" class="code"><code class="language-Python">Solve the following math problem efficiently and clearly:
|
124 |
|
125 |
-
- For simple problems (2 steps or fewer):
|
126 |
-
Provide a concise solution with minimal explanation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
-
|
129 |
-
Use this step-by-step format:
|
130 |
|
131 |
-
|
132 |
-
|
133 |
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
|
|
138 |
|
139 |
-
|
|
|
140 |
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
<p id="
|
146 |
-
|
|
|
147 |
|
148 |
-
|
149 |
-
parsed_expr = latex2sympy(expression)
|
150 |
-
simplified_expr = simplify(parsed_expr)
|
151 |
-
return latex(simplified_expr)</code></pre><p id="15c1384e-bcac-80ea-92cd-d199d25281b4" class="">With this function, we can then iterate over all candidate solutions in an list and keep track of how many times a canonical form has been seen before computing the final majority vote:</p><script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="15d1384e-bcac-80f3-9062-c4f44a0d0b8b" class="code"><code class="language-Python">def find_majority_answer(answers: List[str]) -> str:
|
152 |
-
canonical_groups = defaultdict(int)
|
153 |
-
canonical_to_original = {}
|
154 |
|
155 |
-
|
156 |
-
|
|
|
157 |
|
158 |
-
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
-
if canonical_form not in canonical_to_original:
|
163 |
-
canonical_to_original[canonical_form] = answer
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
for canonical_form, count in canonical_groups.items():
|
168 |
-
if count == max_count:
|
169 |
-
# Return the first occurring group in case of a tie
|
170 |
-
return canonical_to_original[canonical_form]</code></pre>
|
171 |
|
172 |
-
<p id="15d1384e-bcac-
|
173 |
-
<br>
|
174 |
-
<p id="15b1384e-bcac-80f7-83e8-e1d6b360faa4" class="">Here’s how majority voting performs when applied to the generations from Llama 3.2 1B Instruct:</p><figure id="15b1384e-bcac-8072-9987-d80031b97793" class="image"><a href="Scaling%20test-time%20compute%20with%20open%20models%201531384ebcac800b9d73fca3503eb783/methods-maj.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-maj.png"/></a></figure><p id="15b1384e-bcac-8020-8688-fe1713e92c2b" class="">The results show that majority voting yields a significant improvement over the greedy decoding baseline, but its gains start to plateau after approximately \(N=64\) generations. This limitation arises because majority voting struggles with problems that require nuanced reasoning or tasks where errors are consistent across generations. If you’re also wondering why the majority voting accuracy is worse than the 0-shot CoT baseline for \(N=1\) and \(2\), that’s because we sample at \(T=0.8\), which makes it less likely we produce the correct answer among a handful of candidates.</p><p id="15b1384e-bcac-8075-8fef-f26f0b8e5559" class="">Building on the limitations of majority voting, let’s see how incorporating a reward model can enhance performance.</p>
|
175 |
|
176 |
-
<
|
177 |
-
<
|
|
|
|
|
|
|
178 |
|
179 |
-
<
|
180 |
-
<li><strong>Vanilla Best-of-N:</strong> Generate \(N\) independent responses and select the one with the <em>highest RM reward</em> as the final answer. This ensures that the most confident individual response is chosen, but it doesn’t account for consistency across answers.</li>
|
181 |
-
<li><strong>Weighted Best-of-N:</strong> Aggregate scores across all identical responses and select the answer with the <em>highest total reward</em>. This approach prioritises high-quality answers by boosting their scores through repeated occurrences. Mathematically, the weighting across answers \(a_i\) is performed as follows:
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
-
</
|
|
|
|
|
187 |
|
188 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
<
|
191 |
-
<li><strong>Min: </strong>use the minimum score across all steps.</li>
|
192 |
-
<li><strong>Prod: </strong>use the product of step-level scores.</li>
|
193 |
-
<li><strong>Last: </strong>use the final score in the steps. This score contains the cumulative information from all prior steps, so treats the PRM effectively as an ORM that is able to score partial solutions.</li>
|
194 |
-
</ul>
|
195 |
|
196 |
-
<
|
|
|
197 |
|
198 |
-
<
|
|
|
|
|
|
|
199 |
|
200 |
-
<
|
|
|
|
|
|
|
201 |
|
202 |
-
<
|
203 |
-
<li>Generate multiple candidate solutions <em>iteratively</em> by maintaining a fixed number of "beams" or active paths \(N\).</li>
|
204 |
-
<li>In the first iteration, sample \(N\) independent steps from the LLM with temperature \(T\) to introduce diversity in the responses. These steps are usually defined by a stopping criterion like terminating on a new line <code>\n</code> or double new line <code>\n\n</code>.</li>
|
205 |
-
<li>Score each step with the PRM and select the top \(N/M\) steps as candidates for the next round of generation. Here \(M\) denotes the “beam width” of a given active path. As in Best-of-N, we used the “last” reduction to score the partial solutions at each iteration.</li>
|
206 |
-
<li>Expand the steps selected in step (3) by sampling \(M\) next steps in the solution.</li>
|
207 |
-
<li>Repeat steps (3) and (4) until the EOS token is reached or the maximum search depth is exceeded.</li>
|
208 |
-
</ol>
|
209 |
|
210 |
-
<
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
<
|
213 |
-
|
|
|
|
|
|
|
214 |
|
215 |
<ul>
|
216 |
-
<li>
|
217 |
-
<li>
|
218 |
</ul>
|
219 |
|
220 |
-
<p>
|
221 |
-
</div>
|
222 |
-
</details>
|
223 |
-
<br>
|
224 |
-
<p id="15d1384e-bcac-80e9-8e65-e1b58080b94c" class="">In our experiments, we followed DeepMind’s hyperparameter choices and ran beam search with the following:</p>
|
225 |
|
226 |
-
<ul>
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
<li style="list-style-type:disc">Up to 40 iterations, i.e. a tree of maximum depth with 40 steps.</li>
|
231 |
-
</ul>
|
232 |
|
233 |
-
<p id="
|
234 |
|
235 |
-
|
236 |
-
<
|
237 |
-
<li><strong>Model: </strong>use the distribution of average PRM scores per problem to determine the quintiles. The intuition here is that harder problems will have lower scores.</li>
|
238 |
-
</ul>
|
239 |
|
240 |
-
<
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
-
<
|
243 |
-
<li>Majority voting is the worst performer for all compute budgets, except for \(N=256\), where beam search is worst.</li>
|
244 |
-
<li>Beam search is best for \(N=[4,16,64]\), but Best-of-N is best for \(N=256\).</li>
|
245 |
-
</ul>
|
246 |
|
247 |
-
|
|
|
248 |
|
249 |
-
<
|
250 |
|
251 |
-
|
252 |
-
<li>For a given \(N\) and \(M\), expand the initial set of beams into \(N/M\) <em>independent</em> subtrees.</li>
|
253 |
-
<li>For each subtree, select the step with the highest PRM score.</li>
|
254 |
-
<li>Generate \(M\) new steps from the nodes selected in step (2) and select the step with the highest PRM score.</li>
|
255 |
-
<li>Repeat step (3) until the EOS token or maximum tree depth is reached.</li>
|
256 |
-
</ol>
|
257 |
|
258 |
-
|
|
|
|
|
259 |
|
260 |
-
<
|
261 |
-
$$\theta_{q,a^*(q)}^*(N) = \underset{\theta}{\arg\max} \left( \mathbb{E}_{y \sim \text{Target}(\theta, N, q)} \left[ \mathbb{1}_{y = y^*(q)} \right] \right),$$
|
262 |
-
where \(y^*(q)\) is the ground-truth for question \(q\) and \(\theta_{q,a^*(q)}^*(N)\) denotes the compute-optimal scaling strategy. Since computing \(\theta_{q,a^*(q)}^*(N)\) directly is somewhat tricky, DeepMind proposed an approximation based on the <em><strong>problem difficulty</strong></em>, i.e. allocate test-time compute according to which search strategy achieves best performance for a given difficulty level.</p><p id="15a1384e-bcac-80c9-a276-d5ea8974c543" class="">For example, on simpler problems and lower compute budgets, it is better to use strategies like Best-of-N, while on harder problems, beam search is the better choice. To implement this, for each method we compute the accuracy for a given difficulty level and test-time compute budget. And voila, we now have our compute-optimal curve!</p><figure id="15b1384e-bcac-80b3-bc58-d20ba41d3950" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-opt.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-opt.png"/></a></figure>
|
263 |
|
264 |
-
|
|
|
|
|
|
|
265 |
|
266 |
-
<h2 id="15a1384e-bcac-809c-b5e7-eb92dadaebb4" class="">Where to go from here?</h2><p id="15b1384e-bcac-8052-91d7-d6e1f6f66e09" class="">This exploration of test-time compute scaling has revealed both the potential and the challenges of leveraging search-based methods. As we look ahead, several exciting directions emerge:</p>
|
267 |
|
268 |
-
<ol>
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
</ol>
|
276 |
|
277 |
-
We'd love to hear from you on your ideas or feedback in the <a href="https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute/discussions">discussions tab</a
|
278 |
|
279 |
-
<h2 id="15b1384e-bcac-8093-82c6-d9c951dc0bab" class="">Acknowledgements</h2><p id="15c1384e-bcac-80d5-8ad4-d7f6874404c5" class="">We are grateful to Charlie Snell and Aviral Kumar for many discussions about test-time compute scaling and for sharing implementation details from their work. We thank Chun Te Lee for designing the lovely banner and Thomas Wolf, Leandro von Werra, Colin Raffel, and Quentin Gallouédec for many helpful suggestions to improve the blog post. We also thank Hugo Larcher and Mathieu Morlon for continually optimising the Hugging Face Science Cluster to make the GPUs go brrr 🔥!</p>
|
280 |
|
281 |
</d-article>
|
282 |
|
|
|
48 |
<d-contents>
|
49 |
</d-contents>
|
50 |
|
51 |
+
<!-- INTRODUCTION -->
|
52 |
<p>Over the last few years, the scaling of <em><strong>train-time compute</strong></em> has dominated the progress of large language models (LLMs).<d-footnote>Here, train-time compute refers to increasing model size, dataset size, and compute budgets in line with <a href="https://huggingface.co/papers/2001.08361">scaling laws</a>.</d-footnote>Although this paradigm has proven to be remarkably effective, the resources needed to pretrain ever larger models are becoming prohibitively expensive, with <a href="https://youtu.be/WXhikNA5PIc?feature=shared">billion-dollar clusters</a> already on the horizon.<d-footnote>Aside from compute resources, Ilya Sutskever has made the <a href="https://www.youtube.com/watch?feature=shared&t=475&v=1yvBqasHLZs">provocative analogy</a> that pretraining data is the “fossil fuel of AI” and that pretraining as we know it will end once this resource is exhausted in the near future.</d-footnote> This trend has sparked significant interest in a complementary approach: <em><strong>test-time compute scaling</strong></em>. Rather than relying on ever-larger pretraining budgets, test-time methods use dynamic inference strategies that allow models to “think longer” on harder problems. A prominent example is <a href="https://openai.com/index/learning-to-reason-with-llms/">OpenAI’s o1 model</a>, which shows consistent improvement on difficult math problems as one increases the amount of test-time compute:</p>
|
53 |
|
54 |
<figure id="1581384e-bcac-805f-8c2b-dff4509f45cb" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/compute.png.webp"><img style="width:672px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/compute.png.webp"/></a></figure>
|
|
|
69 |
|
70 |
<p id="15c1384e-bcac-804f-a4d5-c8f760f28096" class="">In the rest of this blog post, we’ll dive deep into the ingredients behind results like this one and walk you through practical strategies for implementing test-time compute scaling.</p>
|
71 |
|
72 |
+
<!-- SECTION 1 -->
|
73 |
<h2 id="1591384e-bcac-809f-b7ce-d414b4c0df4e" class="">Strategies for test-time compute scaling</h2>
|
74 |
|
75 |
<p id="1591384e-bcac-8021-a784-d3340af0adb4" class="">There are two main strategies for scaling test-time compute:</p>
|
|
|
111 |
<li><strong>Model:</strong> We used <code>meta-llama/Llama-3.2-1B-Instruct</code> as our primary model for scaling test-time compute. With 1B parameters, its lightweight nature enables fast iterations, and its unsaturated performance on math benchmarks makes it an ideal choice for highlighting the benefits of scaling.</li>
|
112 |
<li><strong>Process reward model: </strong>To guide our search strategies, we used <code>RLHFlow/Llama3.1-8B-PRM-Deepseek-Data</code>, an 8B reward model that has been trained using <em>process supervision</em>. Process supervision is a training approach where models receive feedback on each step of their reasoning process, not just the final outcome. We picked this model since it belongs to the same model family as our policy and gave better results than other PRMs like <a href="https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm">Math-Shepherd</a> we tested in this weight class.</li>
|
113 |
<li><strong>Dataset: </strong>We evaluated on the<a href="https://huggingface.co/datasets/HuggingFaceH4/MATH-500"> MATH-500 subset</a> of the <a href="https://huggingface.co/papers/2103.03874">MATH benchmark</a>, a dataset released by OpenAI as part of their <a href="https://huggingface.co/papers/2305.20050">research</a> on process supervision. These math problems span seven subjects and are challenging for both humans and most LLMs. Take a look at the dataset viewer below to get a taste for the problem difficulty!</li>
|
114 |
+
</ul>
|
115 |
|
116 |
<iframe src="https://huggingface.co/datasets/HuggingFaceH4/MATH-500/embed/viewer/default/test" frameborder="0" width="100%" height="560px"></iframe>
|
117 |
|
|
|
119 |
|
120 |
<p>To warmup, we’ll begin with a simple baseline and progressively incorporate additional techniques to improve performance.</p>
|
121 |
|
122 |
+
<!-- SECTION 2 -->
|
123 |
+
<h2 id="1591384e-bcac-801a-9201-cd4f3b8dfe96" class="">Majority voting: a simple baseline</h2>
|
124 |
+
|
125 |
+
<p>Majority voting—or <a href="https://huggingface.co/papers/2203.11171">self-consistency decoding</a> if you want to be fancy—is the most straightforward method<d-footnote>It’s also the most common sampling method used in the literature and is usually referred to as “maj@X” in tables and results.</d-footnote> to aggregate an LLM’s outputs. As the name suggests, for a given math problem we generate \(N\) candidate solutions and pick the most frequent answer. For all our experiments we sampled up to \(N=256\) candidates with temperature \(T=0.8\) and generated up to 2048 tokens per problem.<d-footnote>We found that sampling with \(T=1.0\) would cause the model to generate Chinese characters midway through a solution and hurt performance.</d-footnote></p>
|
126 |
+
|
127 |
+
<p id="15c1384e-bcac-8086-a0e7-e0ca93b5ea94" class="">One quirk with the MATH benchmark is that answers must be formatted in a LaTeX box like <code>\boxed{answer}</code> . We initially tried the following simple system prompt for Llama 3.2 1B</p>
|
128 |
|
129 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="15c1384e-bcac-8042-9b96-ff3d615bb9f0" class="code"><code class="language-Python">Please think step by step and put your final answer within \boxed{}.</code></pre>
|
130 |
|
131 |
+
<p id="15c1384e-bcac-80d0-bca6-ffed38482a37" class="">but found the resulting accuracy with greedy decoding (\(T=0\)) to be far worse than the 30.6% that Meta reported in their <a href="https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/">release</a>. Luckily, Meta also <a href="https://huggingface.co/datasets/meta-llama/Llama-3.2-1B-Instruct-evals/viewer/Llama-3.2-1B-Instruct-evals__math__details">published</a> the prompts they used for their evals and switching our system prompt to theirs made all the difference:</p>
|
132 |
+
|
133 |
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="15c1384e-bcac-8011-aee6-d7c433df8b5f" class="code"><code class="language-Python">Solve the following math problem efficiently and clearly:
|
134 |
|
135 |
+
- For simple problems (2 steps or fewer):
|
136 |
+
Provide a concise solution with minimal explanation.
|
137 |
+
|
138 |
+
- For complex problems (3 steps or more):
|
139 |
+
Use this step-by-step format:
|
140 |
+
|
141 |
+
## Step 1: [Concise description]
|
142 |
+
[Brief explanation and calculations]
|
143 |
+
|
144 |
+
## Step 2: [Concise description]
|
145 |
+
[Brief explanation and calculations]
|
146 |
+
|
147 |
+
...
|
148 |
+
|
149 |
+
Regardless of the approach, always conclude with:
|
150 |
+
|
151 |
+
Therefore, the final answer is: $\boxed{answer}$. I hope it is correct.
|
152 |
+
|
153 |
+
Where [answer] is just the final number or expression that solves the problem.</code></pre>
|
154 |
|
155 |
+
<p id="15c1384e-bcac-8076-9664-caa1b098c89c" class="">One subtlety with evaluating answers to math problems is that strings like \(1/\sqrt{3}\) and \(\sqrt{3}/3\) are distinct, but represent mathematically equivalent answers. The standard <a href="https://huggingface.co/papers/2206.14858">way</a> to handle this is to convert the a pair of answers to SymPy objects and then check whether subtracting the two objects and applying <code>sympy.simplify</code> gives zero. </p><p id="15c1384e-bcac-8043-a1d3-ffa0c5c3406e" class="">While this approach works well when comparing a small number of candidate answers, we found it was terribly slow when comparing many pairs in a list of \(N\) candidates; in some cases, slower than generating the candidates in the first place! To deal with this, we first reduced each answer to its <a href="https://www.notion.so/Scaling-test-time-compute-with-open-models-1531384ebcac800b9d73fca3503eb783?pvs=21">canonical form</a> and then computed the frequency of each form to determine the majority vote. Expand the detail below if you’re curious about how the code looks.</p>
|
|
|
156 |
|
157 |
+
<details><summary style="font-weight:600;font-size:1.25em;line-height:1.3;margin:0"><strong>Implementation detail</strong></summary><div class="indented"><p id="15d1384e-bcac-8080-b676-e09848694520" class="">To obtain the canonical form of an algebraic expression, we first convert the LaTeX string to SymPy, apply <code>sympy.simplify</code>, and finally convert back to LaTeX: </p><script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="15b1384e-bcac-80c0-96c2-feba0d1cc92e" class="code"><code class="language-Python">from latex2sympy2 import latex2sympy
|
158 |
+
from sympy import latex, simplify
|
159 |
|
160 |
+
def get_canonical_form(expression: str) -> str:
|
161 |
+
parsed_expr = latex2sympy(expression)
|
162 |
+
simplified_expr = simplify(parsed_expr)
|
163 |
+
return latex(simplified_expr)</code></pre><p id="15c1384e-bcac-80ea-92cd-d199d25281b4" class="">With this function, we can then iterate over all candidate solutions in an list and keep track of how many times a canonical form has been seen before computing the final majority vote:</p><script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js" integrity="sha512-7Z9J3l1+EYfeaPKcGXu3MS/7T+w19WtKQY/n+xzmw4hZhJ9tyYmcUS+4QqAlzhicE5LAfMQSF3iFTK9bQdTxXg==" crossorigin="anonymous" referrerPolicy="no-referrer"></script><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css" integrity="sha512-tN7Ec6zAFaVSG3TpNAKtk4DOHNpSwKHxxrsiw4GHKESGPs5njn/0sMCUMl2svV4wo4BK/rCP7juYz+zx+l6oeQ==" crossorigin="anonymous" referrerPolicy="no-referrer"/><pre id="15d1384e-bcac-80f3-9062-c4f44a0d0b8b" class="code"><code class="language-Python">def find_majority_answer(answers: List[str]) -> str:
|
164 |
+
canonical_groups = defaultdict(int)
|
165 |
+
canonical_to_original = {}
|
166 |
|
167 |
+
for answer in answers:
|
168 |
+
canonical_form = get_canonical_form(answer)
|
169 |
|
170 |
+
# Increment count for the canonical form
|
171 |
+
canonical_groups[canonical_form] += 1
|
172 |
|
173 |
+
# Track the original answer for this canonical form
|
174 |
+
if canonical_form not in canonical_to_original:
|
175 |
+
canonical_to_original[canonical_form] = answer
|
176 |
|
177 |
+
# Find the canonical form with the largest count
|
178 |
+
max_count = max(canonical_groups.values())
|
179 |
+
for canonical_form, count in canonical_groups.items():
|
180 |
+
if count == max_count:
|
181 |
+
# Return the first occurring group in case of a tie
|
182 |
+
return canonical_to_original[canonical_form]</code></pre>
|
183 |
|
184 |
+
<p id="15d1384e-bcac-804e-a99c-fe5e83313a3d" class="">This approach was significantly faster than checking each pair of solutions independently for equality.</p></div></details>
|
185 |
+
|
186 |
+
<br><br>
|
187 |
|
188 |
+
<p id="15b1384e-bcac-80f7-83e8-e1d6b360faa4" class="">Here’s how majority voting performs when applied to the generations from Llama 3.2 1B Instruct:</p><figure id="15b1384e-bcac-8072-9987-d80031b97793" class="image"><a href="Scaling%20test-time%20compute%20with%20open%20models%201531384ebcac800b9d73fca3503eb783/methods-maj.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-maj.png"/></a></figure><p id="15b1384e-bcac-8020-8688-fe1713e92c2b" class="">The results show that majority voting yields a significant improvement over the greedy decoding baseline, but its gains start to plateau after approximately \(N=64\) generations. This limitation arises because majority voting struggles with problems that require nuanced reasoning or tasks where errors are consistent across generations. If you’re also wondering why the majority voting accuracy is worse than the 0-shot CoT baseline for \(N=1\) and \(2\), that’s because we sample at \(T=0.8\), which makes it less likely we produce the correct answer among a handful of candidates.</p><p id="15b1384e-bcac-8075-8fef-f26f0b8e5559" class="">Building on the limitations of majority voting, let’s see how incorporating a reward model can enhance performance.</p>
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
<!-- SECTION 3 -->
|
191 |
+
<h2 id="1591384e-bcac-8098-9db5-f76c9ce00e7a" class="">Beyond majority: Best-of-N</h2>
|
192 |
+
<p id="15b1384e-bcac-8019-9b5c-d11bae74628d" class="">Best-of-N is a simple, but effective extension to majority voting that uses a reward model to determine the most plausible answer. This method comes in two main variants:</p>
|
193 |
|
194 |
+
<ul>
|
195 |
+
<li><strong>Vanilla Best-of-N:</strong> Generate \(N\) independent responses and select the one with the <em>highest RM reward</em> as the final answer. This ensures that the most confident individual response is chosen, but it doesn’t account for consistency across answers.</li>
|
196 |
+
<li><strong>Weighted Best-of-N:</strong> Aggregate scores across all identical responses and select the answer with the <em>highest total reward</em>. This approach prioritises high-quality answers by boosting their scores through repeated occurrences. Mathematically, the weighting across answers \(a_i\) is performed as follows:
|
197 |
|
198 |
+
$$ a_\mathrm{weighted} = \arg\max_{a} \sum_{i=1}^{N} \mathbb{I}(a_i = a) \cdot \mathrm{RM}(p, s_i) \,,$$
|
|
|
|
|
199 |
|
200 |
+
where \(\mathrm{RM}(p, s_i)\) is the reward model score of the \(i\)-th solution solution \(s_i\) to problem \(p\).</li>
|
201 |
+
</ul>
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
<p id="15d1384e-bcac-8012-8282-c0ed1215a611" class="">Typically, one usually uses an outcome reward model (ORM) to get a single, solution-level score. But to allow for fair comparison with the other search strategies discussed later, we will use the same PRM to score the solutions from Best-of-N. As illustrated below, PRMs produce a <em>cumulative</em> <em>sequence of step-level scores</em> per solution, so we need to perform a reduction over the steps to obtain a single solution-level score: </p><figure id="15d1384e-bcac-80d6-815f-c7d87fe313a6" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/prm-reductions.png"><img style="width:700px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/prm-reductions.png"/></a></figure><p id="15d1384e-bcac-80e7-8d1a-e0aab286f9f4" class="">In the literature, the most common reductions are the following:</p>
|
|
|
|
|
204 |
|
205 |
+
<ul>
|
206 |
+
<li><strong>Min: </strong>use the minimum score across all steps.</li>
|
207 |
+
<li><strong>Prod: </strong>use the product of step-level scores.</li>
|
208 |
+
<li><strong>Last: </strong>use the final score in the steps. This score contains the cumulative information from all prior steps, so treats the PRM effectively as an ORM that is able to score partial solutions.</li>
|
209 |
+
</ul>
|
210 |
|
211 |
+
<p id="15b1384e-bcac-80ad-96d1-d313ae3e1954" class="">We experimented with each reduction and found—like DeepMind—that <em><strong>“last” performs best for our choice of task and PRM</strong></em>. We use this aggregation throughout all of our experiments and you can expand the detail below to see how we implemented it, along with the weighting procedure discussed above.</p>
|
|
|
|
|
212 |
|
213 |
+
<p id="15d1384e-bcac-809a-8aa8-c52ca7301b52" class="">Here’s the results one gets from applying both variants of Best-of-N:</p><figure id="15b1384e-bcac-808d-857e-d492683a4a91" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-maj-bon.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-maj-bon.png"/></a></figure><p id="15b1384e-bcac-8001-9320-ff788bab0c52" class="">The results reveal a clear advantage: <strong>weighted Best-of-N</strong> consistently outperforms vanilla Best-of-N, especially with larger generation budgets. Its ability to aggregate scores across identical responses ensures that even less frequent but higher-quality answers are effectively prioritized.</p><p id="15b1384e-bcac-808a-b3ff-ee08c05a20af" class="">However, despite these improvements, we’re still falling short of the performance achieved by the Llama 8B model and the Best-of-N approach is starting to plateau at \(N=256\) generations. Can we push the boundaries further by supervising the search process step-by-step? Let’s find out 🚀!</p>
|
214 |
|
215 |
+
<!-- SECTION 4 -->
|
216 |
+
<h2 id="1591384e-bcac-8065-a02c-cd760ebd6cd1" class="">Beam search with process reward models</h2>
|
217 |
+
|
218 |
+
<p id="15a1384e-bcac-80e1-9e0e-c01f5f373805" class="">Beam search is a structured search method that systematically explores the solution space, making it a powerful tool for improving model outputs at test-time. When combined with a PRM, beam search can optimize both the generation and evaluation of intermediate steps in problem-solving. The way it works is as follows:</p>
|
219 |
|
220 |
+
<ol>
|
221 |
+
<li>Generate multiple candidate solutions <em>iteratively</em> by maintaining a fixed number of "beams" or active paths \(N\).</li>
|
222 |
+
<li>In the first iteration, sample \(N\) independent steps from the LLM with temperature \(T\) to introduce diversity in the responses. These steps are usually defined by a stopping criterion like terminating on a new line <code>\n</code> or double new line <code>\n\n</code>.</li>
|
223 |
+
<li>Score each step with the PRM and select the top \(N/M\) steps as candidates for the next round of generation. Here \(M\) denotes the “beam width” of a given active path. As in Best-of-N, we used the “last” reduction to score the partial solutions at each iteration.</li>
|
224 |
+
<li>Expand the steps selected in step (3) by sampling \(M\) next steps in the solution.</li>
|
225 |
+
<li>Repeat steps (3) and (4) until the EOS token is reached or the maximum search depth is exceeded.</li>
|
226 |
+
</ol>
|
227 |
|
228 |
+
<p id="15a1384e-bcac-8003-a9d9-da7f3a4dc321" class="">By allowing the PRM to evaluate the correctness of intermediate steps, beam search can identify and prioritize promising paths early in the process. This step-by-step evaluation is particularly beneficial for complex reasoning tasks like mathematics, where verifying partial solutions can significantly improve final outcomes.</p>
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
<details><summary style="font-weight:600;font-size:1.25em;line-height:1.3;margin:0">Implementation detail</summary><div class="indented">
|
231 |
+
<p id="15b1384e-bcac-8065-a739-d24b699106be" class="">When we implemented beam search with process supervision, we encountered two major footguns with the Llama 3 chat template that are worth mentioning:</p>
|
232 |
|
233 |
+
<ul>
|
234 |
+
<li>By default, the chat template trims trailing new lines from every assistant turn. As a result, if one uses <code>\n</code> or <code>\n\n</code> to terminate a step, these tokens are lost on subsequent steps and force the model to produce peculiar outputs.</li>
|
235 |
+
<li>The chat template is prefixed with Llama’s BOS token. When the formatted string is fed to vLLM a <em>second</em> BOS token is added which completely ruins performance, even though the generations look mostly coherent 🤯</li>
|
236 |
+
</ul>
|
237 |
|
238 |
+
<p>The solution is to overwrite the Llama 3 chat template to prevent trimming and exclude the BOS token prefix.</p>
|
239 |
+
</div>
|
240 |
+
</details>
|
241 |
+
<br><br>
|
242 |
|
243 |
+
<p id="15d1384e-bcac-80e9-8e65-e1b58080b94c" class="">In our experiments, we followed DeepMind’s hyperparameter choices and ran beam search with the following:</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
+
<ul>
|
246 |
+
<li>\(N\) beams in compute scalings of 4, 16, 64, 256</li>
|
247 |
+
<li>Fixed beam width \(M=4\)</li>
|
248 |
+
<li>Sampling with temperature \(T=0.8\)</li>
|
249 |
+
<li style="list-style-type:disc">Up to 40 iterations, i.e. a tree of maximum depth with 40 steps.</li>
|
250 |
+
</ul>
|
251 |
|
252 |
+
<p id="15d1384e-bcac-8051-abe5-dc84c42a1b5f" class="">As shown below, the results are striking: with a test-time budget of \(N=4\), beam search achieves the same accuracy as Best-of-N for \(N=16\), i.e. it is 4x more compute efficient! Moreover, beam search matches the performance of Llama 3.1 8B with just \(N=32\) solutions per problem. The average performance on MATH by computer science PhD students is around 40%, so reaching nearly 55% isn’t too bad for a 1B model 💪!</p><figure id="15b1384e-bcac-80e9-97fa-fe50d1811f5b" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-maj-bon-beam.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-maj-bon-beam.png"/></a></figure>
|
253 |
+
|
254 |
+
<h3 id="15a1384e-bcac-800c-baee-fb99b242ef87" class="">Which problems does beam search solve best?</h3>
|
255 |
+
|
256 |
+
<p id="15d1384e-bcac-80e3-938a-c3f09db2e9ff" class="">Although in aggregate it is clear that beam search is a better search strategy than Best-of-N or majority voting, the DeepMind paper showed that <em><strong>each strategy has tradeoffs that depend on the problem difficulty</strong></em> and test-time compute budget. </p><p id="15d1384e-bcac-8015-a8f0-c2323b9e535f" class="">To see which problems are best suited for which strategy, DeepMind computed a distribution over estimated problem difficulty, and then binned the results into quintiles. In other words, each problem is assigned one of 5 levels, where level 1 indicates easier problems and level 5 indicates the hardest ones. To estimate problem difficulty, DeepMind generated 2048 candidate solutions with standard sampling per problem and then proposed the following heuristics:</p>
|
257 |
|
258 |
<ul>
|
259 |
+
<li><strong>Oracle: </strong>use the ground truth labels to estimate the pass@1 score per problem. Bin the distribution of pass@1 scores to determine the quintiles.</li>
|
260 |
+
<li><strong>Model: </strong>use the distribution of average PRM scores per problem to determine the quintiles. The intuition here is that harder problems will have lower scores.</li>
|
261 |
</ul>
|
262 |
|
263 |
+
<p id="15d1384e-bcac-80a3-af7c-f3497126ab1e" class="">Here’s the breakdown of the various methods according to the pass@1 scores and across four test-time compute budgets of \(N = [4,16,64, 256]\):</p><figure id="15b1384e-bcac-80ad-9cf3-cf5bcbd3f53b" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/levels-maj-bon-beam.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/levels-maj-bon-beam.png"/></a></figure><p id="15d1384e-bcac-80c3-93b3-fa4c071ac807" class="">In this plot, each bar denotes a test-time compute budget, and within each bar we show the relative accuracy of each method. For example, in the group of four bars on difficulty level 2 we see that:</p>
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
<ul>
|
266 |
+
<li>Majority voting is the worst performer for all compute budgets, except for \(N=256\), where beam search is worst.</li>
|
267 |
+
<li>Beam search is best for \(N=[4,16,64]\), but Best-of-N is best for \(N=256\).</li>
|
268 |
+
</ul>
|
|
|
|
|
269 |
|
270 |
+
<p id="15a1384e-bcac-80d4-af98-eaebf5fcf84e" class="">Although we see that beam search gives consistent gains in the medium and hard problems (levels 3-5), it tends to do worse than Best-of-N (and even majority voting!) on the simpler problems and especially at large compute budgets. </p><p id="15a1384e-bcac-805b-9949-f0cdc44c9e3c" class="">We realized from looking at the resulting trees produced by beam search, that if a single step is assigned high reward, then the whole tree collapses to that trace and thus diversity is impacted. This prompted us to explore an extension to beam search that maximises diversity - let’s take a look!</p>
|
271 |
|
272 |
+
<!-- SECTION 5 -->
|
273 |
+
<h2 id="1591384e-bcac-80d2-8234-fe0e9a4df59d" class="">DVTS: boosting performance with diversity</h2><p id="1591384e-bcac-8044-b7c5-cf39e4aed683" class="">As we saw above beam search gives strong performance over Best-of-N, but tends to underperform on simpler problems and at large test-time compute budgets. To address this, we developed an extension we call Diverse Verifier Tree Search (DVTS) that is designed to maximise diversity at large \(N\).</p><p id="15a1384e-bcac-80ff-a97b-c7ccd88958e4" class="">DVTS works in a similar fashion as beam search, with the following modifications:</p>
|
|
|
|
|
274 |
|
275 |
+
<ol>
|
276 |
+
<li>For a given \(N\) and \(M\), expand the initial set of beams into \(N/M\) <em>independent</em> subtrees.</li>
|
277 |
+
<li>For each subtree, select the step with the highest PRM score.</li>
|
278 |
+
<li>Generate \(M\) new steps from the nodes selected in step (2) and select the step with the highest PRM score.</li>
|
279 |
+
<li>Repeat step (3) until the EOS token or maximum tree depth is reached.</li>
|
280 |
+
</ol>
|
281 |
|
282 |
+
<p id="15d1384e-bcac-8087-b916-d9603de035dd" class="">Here’s the results from applying DVTS to Llama 1B:</p><figure id="15b1384e-bcac-801c-a1e7-d4e544826da3" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-all.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-all.png"/></a></figure><p id="15b1384e-bcac-80e1-bc9b-dbdb5738b9f1" class="">As we can see, DVTS provides a complementary strategy to beam search: at small \(N\) beam search is more effective at finding correct solutions, but at large \(N\) the diversity of DVTS candidates kicks in and we get better performance. </p><p id="15d1384e-bcac-80a7-8379-dca3c329c433" class="">We can also see this manifested in the problem difficulty breakdown, where DVTS enhances performance on the easy / medium problems at large \(N\), while beam search is best at small \(N\) across model problem difficulties:</p><figure id="15b1384e-bcac-807a-8dca-f322077cc616" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/levels-all.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/levels-all.png"/></a></figure>
|
|
|
|
|
|
|
283 |
|
284 |
+
<!-- SECTION 6 -->
|
285 |
+
<h2 id="1591384e-bcac-806b-9dd0-c80a250c7754" class="">The best of all worlds: compute-optimal scaling</h2>
|
286 |
|
287 |
+
<p>Armed with various search strategies, a natural question is which one is best? In the DeepMind paper, they proposed a <em><strong>compute-optimal</strong></em> <em><strong>scaling strategy</strong></em> where one selects the search method and hyperparameters \(\theta\) that achieves the <em><strong>best performance for a given compute budget </strong></em><em>\(N\)</em><em><strong>:</strong></em>
|
288 |
|
289 |
+
$$\theta_{q,a^*(q)}^*(N) = \underset{\theta}{\arg\max} \left( \mathbb{E}_{y \sim \text{Target}(\theta, N, q)} \left[ \mathbb{1}_{y = y^*(q)} \right] \right),$$
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
where \(y^*(q)\) is the ground-truth for question \(q\) and \(\theta_{q,a^*(q)}^*(N)\) denotes the compute-optimal scaling strategy. Since computing \(\theta_{q,a^*(q)}^*(N)\) directly is somewhat tricky, DeepMind proposed an approximation based on the <em><strong>problem difficulty</strong></em>, i.e. allocate test-time compute according to which search strategy achieves best performance for a given difficulty level.</p>
|
292 |
+
|
293 |
+
<p id="15a1384e-bcac-80c9-a276-d5ea8974c543" class="">For example, on simpler problems and lower compute budgets, it is better to use strategies like Best-of-N, while on harder problems, beam search is the better choice. To implement this, for each method we compute the accuracy for a given difficulty level and test-time compute budget. And voila, we now have our compute-optimal curve!</p>
|
294 |
|
295 |
+
<figure id="15b1384e-bcac-80b3-bc58-d20ba41d3950" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-opt.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-opt.png"/></a></figure>
|
|
|
|
|
296 |
|
297 |
+
<!-- SECTION 7 -->
|
298 |
+
<h2 id="1591384e-bcac-809a-96d2-e928398d159a" class="">Scaling up to larger models</h2>
|
299 |
+
|
300 |
+
<p id="15a1384e-bcac-8078-86d7-f48c2146444e" class="">We also explored scaling up the compute-optimal recipe to Llama 3.2 3B Instruct to see at what point the benefits of the PRM fade in comparison to the policy’s own capacity. To our surprise, compute-optimal scaling works remarkably well, with the 3B model surpassing the performance of Llama 3.1 70B Instruct (22x it's size!):</p><figure id="15b1384e-bcac-80b3-bc58-d20ba41d3950" class="image"><a href="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-opt-3b.png"><img style="width:707.9891357421875px" src="https://huggingface.co/datasets/HuggingFaceH4/blogpost-images/resolve/main/methods-opt-3b.png"/></a></figure>
|
301 |
|
302 |
+
<h2 id="15a1384e-bcac-809c-b5e7-eb92dadaebb4" class="">Where to go from here?</h2><p id="15b1384e-bcac-8052-91d7-d6e1f6f66e09" class="">This exploration of test-time compute scaling has revealed both the potential and the challenges of leveraging search-based methods. As we look ahead, several exciting directions emerge:</p>
|
303 |
|
304 |
+
<ol>
|
305 |
+
<li><strong>The Power of Strong Verifiers:</strong> Strong verifiers play a critical role in enhancing performance. However, their current limitations are apparent, as highlighted in benchmarks like <em>ProcessBench</em>. Improving the robustness and generalization of verifiers will be crucial for advancing these methods.</li>
|
306 |
+
<li><strong>The Challenge of Self-Verification:</strong> The ultimate goal—or "holy grail"—is achieving self-verification, where models can validate their own outputs autonomously. This approach appears to be what models like o1 are doing, but remains difficult to implement in practice. Unlike standard supervised fine-tuning (SFT), self-verification demands more nuanced strategies. The recent DeepMind paper on self-verification and <em>Score</em> sheds light on this challenge and offers a pathway for future research.</li>
|
307 |
+
<li><strong>Integrating “Thoughts” into the Process:</strong> Incorporating explicit intermediate steps or “thoughts” during generation could further enhance reasoning and decision-making. By integrating structured reasoning into the search process, we may unlock better performance on complex tasks.</li>
|
308 |
+
<li><strong>Search as a Data Generation Tool:</strong> This method can also serve as a powerful data generation process, creating high-quality training datasets. For example, fine-tuning models like Llama 1B on correct traces produced by search could yield significant gains. This on-policy approach resembles techniques like ReST or V-StaR but with the added benefits of search, offering a promising direction for iterative improvement.</li>
|
309 |
+
<li><strong>A Call for More PRMs:</strong> Open process reward models (PRMs) are relatively rare, limiting their broader application. Developing and sharing more PRMs for different domains is a critical area where the community can contribute significantly.</li>
|
310 |
+
<li><strong>Expanding Beyond Verifiable Domains:</strong> While current methods excel in domains like math and code, where solutions are inherently verifiable, extending these techniques to other areas remains a major challenge. How can we adapt these strategies for less structured or subjective tasks? This is a vital question for future exploration.</li>
|
311 |
+
</ol>
|
312 |
|
313 |
+
<p>We'd love to hear from you on your ideas or feedback in the <a href="https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute/discussions">discussions tab</a>!</p>
|
314 |
|
315 |
+
<h2 id="15b1384e-bcac-8093-82c6-d9c951dc0bab" class="">Acknowledgements</h2><p id="15c1384e-bcac-80d5-8ad4-d7f6874404c5" class="">We are grateful to Charlie Snell and Aviral Kumar for many discussions about test-time compute scaling and for sharing implementation details from their work. We thank Chun Te Lee for designing the lovely banner and Thomas Wolf, Leandro von Werra, Colin Raffel, and Quentin Gallouédec for many helpful suggestions to improve the blog post. We also thank Hugo Larcher and Mathieu Morlon for continually optimising the Hugging Face Science Cluster to make the GPUs go brrr 🔥!</p>
|
316 |
|
317 |
</d-article>
|
318 |
|