Spaces:
Runtime error
Runtime error
init app
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +2 -2
- app.py +663 -0
- nets/gau.npy +3 -0
- nets/head.net +3 -0
- nets/inception.net +3 -0
- nets/neck.net +3 -0
- nets/reader.net +3 -0
- nets/refs.net +3 -0
- nets/render_head.net +3 -0
- nets/render_neck.net +3 -0
- nets/tail.net +3 -0
- requirements.txt +6 -0
- res/Texture/1.jpg +3 -0
- res/Texture/127.png +3 -0
- res/Texture/ai.png +3 -0
- res/Texture/b.png +3 -0
- res/Texture/big_logo.png +3 -0
- res/Texture/board.png +3 -0
- res/Texture/brush.png +3 -0
- res/Texture/circle.png +3 -0
- res/Texture/clear.png +3 -0
- res/Texture/downloadh.png +3 -0
- res/Texture/drag.png +3 -0
- res/Texture/dropper.png +3 -0
- res/Texture/dustbin.png +3 -0
- res/Texture/eraser.png +3 -0
- res/Texture/fil.png +3 -0
- res/Texture/filled-circle.png +3 -0
- res/Texture/folder.png +3 -0
- res/Texture/girl.png +3 -0
- res/Texture/girl_raw.png +3 -0
- res/Texture/github.png +3 -0
- res/Texture/grids.png +3 -0
- res/Texture/help.png +3 -0
- res/Texture/hint.png +3 -0
- res/Texture/left-arrow.png +3 -0
- res/Texture/left.png +3 -0
- res/Texture/loading.png +3 -0
- res/Texture/magic.png +3 -0
- res/Texture/pallete.png +3 -0
- res/Texture/pencil.png +3 -0
- res/Texture/ref.png +3 -0
- res/Texture/refresh.png +3 -0
- res/Texture/result.png +3 -0
- res/Texture/right-arrow.png +3 -0
- res/Texture/right.png +3 -0
- res/Texture/ring.png +3 -0
- res/Texture/s.png +3 -0
- res/Texture/sketch.png +3 -0
- res/Texture/skilled.png +3 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Style2Paints 4.5 Gradio
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.27.0
|
|
|
1 |
---
|
2 |
title: Style2Paints 4.5 Gradio
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.27.0
|
app.py
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import datetime
|
4 |
+
import pickle
|
5 |
+
import base64
|
6 |
+
import json
|
7 |
+
import gzip
|
8 |
+
import re
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
from tqdm import tqdm
|
12 |
+
from cv2.ximgproc import l0Smooth, createGuidedFilter, guidedFilter
|
13 |
+
|
14 |
+
|
15 |
+
import tensorflow
|
16 |
+
|
17 |
+
tensorflow.compat.v1.disable_v2_behavior()
|
18 |
+
tf = tensorflow.compat.v1
|
19 |
+
|
20 |
+
|
21 |
+
import os
|
22 |
+
import glob
|
23 |
+
import shutil
|
24 |
+
|
25 |
+
splash = glob.glob('ui/web-mobile/splash*')[0]
|
26 |
+
os.remove(splash)
|
27 |
+
shutil.copy('res/splash.png', splash)
|
28 |
+
with open('ui/web-mobile/index.html', 'r', encoding='utf-8') as f:
|
29 |
+
page = f.read()
|
30 |
+
with open('ui/web-mobile/index.html', 'w', encoding='utf-8') as f:
|
31 |
+
f.write(page.replace('Cocos Creator | ', ''))
|
32 |
+
|
33 |
+
|
34 |
+
def ToGray(x):
|
35 |
+
R = x[:, :, :, 0:1]
|
36 |
+
G = x[:, :, :, 1:2]
|
37 |
+
B = x[:, :, :, 2:3]
|
38 |
+
return 0.30 * R + 0.59 * G + 0.11 * B
|
39 |
+
|
40 |
+
|
41 |
+
def VGG2RGB(x):
|
42 |
+
return (x + [103.939, 116.779, 123.68])[:, :, :, ::-1]
|
43 |
+
|
44 |
+
|
45 |
+
def norm_feature(x, core):
|
46 |
+
cs0 = tf.shape(core)[1]
|
47 |
+
cs1 = tf.shape(core)[2]
|
48 |
+
small = tf.image.resize_area(x, (cs0, cs1))
|
49 |
+
avged = tf.nn.avg_pool(tf.pad(small, [[0, 0], [2, 2], [2, 2], [0, 0]], 'REFLECT'), [1, 5, 5, 1], [1, 1, 1, 1],
|
50 |
+
'VALID')
|
51 |
+
return tf.image.resize_bicubic(avged, tf.shape(x)[1:3])
|
52 |
+
|
53 |
+
|
54 |
+
def blur(x):
|
55 |
+
def layer(op):
|
56 |
+
def layer_decorated(self, *args, **kwargs):
|
57 |
+
# Automatically set a name if not provided.
|
58 |
+
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
|
59 |
+
# Figure out the layer inputs.
|
60 |
+
if len(self.terminals) == 0:
|
61 |
+
raise RuntimeError('No input variables found for layer %s.' % name)
|
62 |
+
elif len(self.terminals) == 1:
|
63 |
+
layer_input = self.terminals[0]
|
64 |
+
else:
|
65 |
+
layer_input = list(self.terminals)
|
66 |
+
# Perform the operation and get the output.
|
67 |
+
layer_output = op(self, layer_input, *args, **kwargs)
|
68 |
+
# Add to layer LUT.
|
69 |
+
self.layers[name] = layer_output
|
70 |
+
# This output is now the input for the next layer.
|
71 |
+
self.feed(layer_output)
|
72 |
+
# Return self for chained calls.
|
73 |
+
return self
|
74 |
+
|
75 |
+
return layer_decorated
|
76 |
+
|
77 |
+
class Smoother(object):
|
78 |
+
def __init__(self, inputs, filter_size, sigma):
|
79 |
+
self.inputs = inputs
|
80 |
+
self.terminals = []
|
81 |
+
self.layers = dict(inputs)
|
82 |
+
self.filter_size = filter_size
|
83 |
+
self.sigma = sigma
|
84 |
+
self.setup()
|
85 |
+
|
86 |
+
def setup(self):
|
87 |
+
(self.feed('data')
|
88 |
+
.conv(name='smoothing'))
|
89 |
+
|
90 |
+
def get_unique_name(self, prefix):
|
91 |
+
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
|
92 |
+
return '%s_%d' % (prefix, ident)
|
93 |
+
|
94 |
+
def feed(self, *args):
|
95 |
+
assert len(args) != 0
|
96 |
+
self.terminals = []
|
97 |
+
for fed_layer in args:
|
98 |
+
if isinstance(fed_layer, str):
|
99 |
+
try:
|
100 |
+
fed_layer = self.layers[fed_layer]
|
101 |
+
except KeyError:
|
102 |
+
raise KeyError('Unknown layer name fed: %s' % fed_layer)
|
103 |
+
self.terminals.append(fed_layer)
|
104 |
+
return self
|
105 |
+
|
106 |
+
def gauss_kernel(self, kernlen=21, nsig=3, channels=1):
|
107 |
+
out_filter = np.load('./nets/gau.npy')
|
108 |
+
return out_filter
|
109 |
+
|
110 |
+
def make_gauss_var(self, name, size, sigma, c_i):
|
111 |
+
kernel = self.gauss_kernel(size, sigma, c_i)
|
112 |
+
var = tf.Variable(tf.convert_to_tensor(kernel), name=name)
|
113 |
+
return var
|
114 |
+
|
115 |
+
def get_output(self):
|
116 |
+
'''Returns the smoother output.'''
|
117 |
+
return self.terminals[-1]
|
118 |
+
|
119 |
+
@layer
|
120 |
+
def conv(self,
|
121 |
+
input,
|
122 |
+
name,
|
123 |
+
padding='SAME'):
|
124 |
+
# Get the number of channels in the input
|
125 |
+
c_i = input.get_shape().as_list()[3]
|
126 |
+
# Convolution for a given input and kernel
|
127 |
+
convolve = lambda i, k: tf.nn.depthwise_conv2d(i, k, [1, 1, 1, 1],
|
128 |
+
padding=padding)
|
129 |
+
with tf.variable_scope(name) as scope:
|
130 |
+
kernel = self.make_gauss_var('gauss_weight', self.filter_size,
|
131 |
+
self.sigma, c_i)
|
132 |
+
output = convolve(input, kernel)
|
133 |
+
return output
|
134 |
+
|
135 |
+
return Smoother({'data': tf.pad(x, [[0, 0], [9, 9], [9, 9], [0, 0]], 'SYMMETRIC')}, 7, 2).get_output()[:, 9: -9,
|
136 |
+
9: -9, :]
|
137 |
+
|
138 |
+
|
139 |
+
def downsample(x):
|
140 |
+
return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
141 |
+
|
142 |
+
|
143 |
+
def nts(x):
|
144 |
+
return (x + [103.939, 116.779, 123.68])[:, :, :, ::-1] / 255.0
|
145 |
+
|
146 |
+
|
147 |
+
def np_expand_image(x):
|
148 |
+
p = np.pad(x, ((1, 1), (1, 1), (0, 0)), 'symmetric')
|
149 |
+
r = []
|
150 |
+
r.append(p[:-2, 1:-1, :])
|
151 |
+
r.append(p[1:-1, :-2, :])
|
152 |
+
r.append(p[1:-1, 1:-1, :])
|
153 |
+
r.append(p[1:-1, 2:, :])
|
154 |
+
r.append(p[2:, 1:-1, :])
|
155 |
+
return np.stack(r, axis=2)
|
156 |
+
|
157 |
+
|
158 |
+
def build_sketch_sparse(x, abs):
|
159 |
+
x = x[:, :, None].astype(np.float32)
|
160 |
+
expanded = np_expand_image(x)
|
161 |
+
distance = x[:, :, None] - expanded
|
162 |
+
if abs:
|
163 |
+
distance = np.abs(distance)
|
164 |
+
weight = 8 - distance
|
165 |
+
weight[weight < 0] = 0.0
|
166 |
+
weight /= np.sum(weight, axis=2, keepdims=True)
|
167 |
+
return weight
|
168 |
+
|
169 |
+
|
170 |
+
def build_repeat_mulsep(x, m, i):
|
171 |
+
a = m[:, :, 0]
|
172 |
+
b = m[:, :, 1]
|
173 |
+
c = m[:, :, 2]
|
174 |
+
d = m[:, :, 3]
|
175 |
+
e = m[:, :, 4]
|
176 |
+
y = x
|
177 |
+
for _ in range(i):
|
178 |
+
p = tf.pad(y, [[1, 1], [1, 1], [0, 0]], 'SYMMETRIC')
|
179 |
+
y = p[:-2, 1:-1, :] * a + p[1:-1, :-2, :] * b + y * c + p[1:-1, 2:, :] * d + p[2:, 1:-1, :] * e
|
180 |
+
return y
|
181 |
+
|
182 |
+
|
183 |
+
session = tf.Session()
|
184 |
+
tf.keras.backend.set_session(session)
|
185 |
+
|
186 |
+
ip1 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 1))
|
187 |
+
ip3 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 3))
|
188 |
+
ip4 = tf.placeholder(dtype=tf.float32, shape=(None, None, None, 4))
|
189 |
+
ipsp9 = tf.placeholder(dtype=tf.float32, shape=(None, None, 5, 1))
|
190 |
+
ipsp3 = tf.placeholder(dtype=tf.float32, shape=(None, None, 3))
|
191 |
+
|
192 |
+
tf_sparse_op_H = build_repeat_mulsep(ipsp3, ipsp9, 64)
|
193 |
+
tf_sparse_op_L = build_repeat_mulsep(ipsp3, ipsp9, 16)
|
194 |
+
|
195 |
+
|
196 |
+
def make_graph():
|
197 |
+
with gzip.open('./nets/refs.net', 'rb') as fp:
|
198 |
+
refs_img = pickle.load(fp)
|
199 |
+
|
200 |
+
tail = tf.keras.models.load_model('./nets/tail.net')
|
201 |
+
reader = tf.keras.models.load_model('./nets/reader.net')
|
202 |
+
head = tf.keras.models.load_model('./nets/head.net')
|
203 |
+
neck = tf.keras.models.load_model('./nets/neck.net')
|
204 |
+
inception = tf.keras.models.load_model('./nets/inception.net')
|
205 |
+
render_head = tf.keras.models.load_model('./nets/render_head.net')
|
206 |
+
render_neck = tf.keras.models.load_model('./nets/render_neck.net')
|
207 |
+
|
208 |
+
tail_op = tail(ip3)
|
209 |
+
features = reader(ip3 / 255.0)
|
210 |
+
print('Loaded some basic models.')
|
211 |
+
feed = [1 - ip1 / 255.0, (ip4[:, :, :, 0:3] / 127.5 - 1) * ip4[:, :, :, 3:4] / 255.0]
|
212 |
+
for _ in range(len(features)):
|
213 |
+
feed.append(tf.reduce_mean(features[_], axis=[1, 2]))
|
214 |
+
nil0, nil1, head_temp = head(feed)
|
215 |
+
feed[0] = tf.clip_by_value(1 - tf.image.resize_bilinear(ToGray(VGG2RGB(head_temp) / 255.0), tf.shape(ip1)[1:3]),
|
216 |
+
0.0, 1.0)
|
217 |
+
nil4, nil5, head_temp = neck(feed)
|
218 |
+
head_op = VGG2RGB(head_temp)
|
219 |
+
features_render = inception((ip3 + (downsample(ip1) - blur(downsample(ip1))) * 2.0) / 255.0)
|
220 |
+
precessed_feed = [(ip4[:, :, :, 0:3] / 127.5 - 1) * ip4[:, :, :, 3:4] / 255.0] + [
|
221 |
+
norm_feature(item, features_render[-1]) for item in features_render]
|
222 |
+
nil6, nil7, render_A = render_head([1 - ip1 / 255.0] + precessed_feed)
|
223 |
+
nil8, nil9, render_B = render_neck(
|
224 |
+
[1 - tf.image.resize_bilinear(ToGray(nts(render_A)), tf.shape(ip1)[1:3])] + precessed_feed)
|
225 |
+
render_op = nts(render_B) * 255.0
|
226 |
+
print('Loaded - Style2Paints Deep Learning Engine V4.6 - GPU')
|
227 |
+
|
228 |
+
session.run(tf.global_variables_initializer())
|
229 |
+
|
230 |
+
tail.load_weights('./nets/tail.net')
|
231 |
+
head.load_weights('./nets/head.net')
|
232 |
+
neck.load_weights('./nets/neck.net')
|
233 |
+
reader.load_weights('./nets/reader.net')
|
234 |
+
inception.load_weights('./nets/inception.net')
|
235 |
+
render_head.load_weights('./nets/render_head.net')
|
236 |
+
render_neck.load_weights('./nets/render_neck.net')
|
237 |
+
|
238 |
+
print('Deep learning modules are ready.')
|
239 |
+
|
240 |
+
return tail_op, head_op, render_op, refs_img
|
241 |
+
|
242 |
+
|
243 |
+
tail_op_g, head_op_g, render_op_g, refs_img_g = make_graph()
|
244 |
+
|
245 |
+
|
246 |
+
def go_tail(x):
|
247 |
+
def srange(l, s):
|
248 |
+
result = []
|
249 |
+
iters = int(float(l) / float(s))
|
250 |
+
for i in range(iters):
|
251 |
+
result.append([i * s, (i + 1) * s])
|
252 |
+
result[len(result) - 1][1] = l
|
253 |
+
return result
|
254 |
+
|
255 |
+
H, W, C = x.shape
|
256 |
+
padded_img = np.pad(x, ((20, 20), (20, 20), (0, 0)), 'symmetric').astype(np.float32) / 255.0
|
257 |
+
lines = []
|
258 |
+
for hs, he in srange(H, 64):
|
259 |
+
items = []
|
260 |
+
for ws, we in srange(W, 64):
|
261 |
+
items.append(padded_img[hs:he + 40, ws:we + 40, :])
|
262 |
+
lines.append(items)
|
263 |
+
iex = 0
|
264 |
+
result_all_lines = []
|
265 |
+
for line in lines:
|
266 |
+
result_one_line = []
|
267 |
+
for item in line:
|
268 |
+
ots = session.run(tail_op_g, feed_dict={ip3: item[None, :, :, :]})[0]
|
269 |
+
result_one_line.append(ots[41:-41, 41:-41, :])
|
270 |
+
print('Slicing ... ' + str(iex))
|
271 |
+
iex += 1
|
272 |
+
result_one_line = np.concatenate(result_one_line, axis=1)
|
273 |
+
result_all_lines.append(result_one_line)
|
274 |
+
result_all_lines = np.concatenate(result_all_lines, axis=0)
|
275 |
+
return (result_all_lines * 255.0).clip(0, 255).astype(np.uint8)
|
276 |
+
|
277 |
+
|
278 |
+
def go_head(sketch, global_hint, local_hint):
|
279 |
+
return session.run(head_op_g, feed_dict={
|
280 |
+
ip1: sketch[None, :, :, None], ip3: global_hint[None, :, :, :], ip4: local_hint[None, :, :, :]
|
281 |
+
})[0].clip(0, 255).astype(np.uint8)
|
282 |
+
|
283 |
+
|
284 |
+
def go_render(sketch, segmentation, points):
|
285 |
+
return session.run(render_op_g, feed_dict={
|
286 |
+
ip1: sketch[None, :, :, None], ip3: segmentation[None, :, :, :], ip4: points[None, :, :, :]
|
287 |
+
})[0].clip(0, 255).astype(np.uint8)
|
288 |
+
|
289 |
+
|
290 |
+
print('Deep learning functions are ready.')
|
291 |
+
|
292 |
+
|
293 |
+
def k_resize(x, k):
|
294 |
+
if x.shape[0] < x.shape[1]:
|
295 |
+
s0 = k
|
296 |
+
s1 = int(x.shape[1] * (k / x.shape[0]))
|
297 |
+
s1 = s1 - s1 % 64
|
298 |
+
_s0 = 16 * s0
|
299 |
+
_s1 = int(x.shape[1] * (_s0 / x.shape[0]))
|
300 |
+
_s1 = (_s1 + 32) - (_s1 + 32) % 64
|
301 |
+
else:
|
302 |
+
s1 = k
|
303 |
+
s0 = int(x.shape[0] * (k / x.shape[1]))
|
304 |
+
s0 = s0 - s0 % 64
|
305 |
+
_s1 = 16 * s1
|
306 |
+
_s0 = int(x.shape[0] * (_s1 / x.shape[1]))
|
307 |
+
_s0 = (_s0 + 32) - (_s0 + 32) % 64
|
308 |
+
new_min = min(_s1, _s0)
|
309 |
+
raw_min = min(x.shape[0], x.shape[1])
|
310 |
+
if new_min < raw_min:
|
311 |
+
interpolation = cv2.INTER_AREA
|
312 |
+
else:
|
313 |
+
interpolation = cv2.INTER_LANCZOS4
|
314 |
+
y = cv2.resize(x, (_s1, _s0), interpolation=interpolation)
|
315 |
+
return y
|
316 |
+
|
317 |
+
|
318 |
+
def d_resize(x, d, fac=1.0):
|
319 |
+
new_min = min(int(d[1] * fac), int(d[0] * fac))
|
320 |
+
raw_min = min(x.shape[0], x.shape[1])
|
321 |
+
if new_min < raw_min:
|
322 |
+
interpolation = cv2.INTER_AREA
|
323 |
+
else:
|
324 |
+
interpolation = cv2.INTER_LANCZOS4
|
325 |
+
y = cv2.resize(x, (int(d[1] * fac), int(d[0] * fac)), interpolation=interpolation)
|
326 |
+
return y
|
327 |
+
|
328 |
+
|
329 |
+
def min_resize(x, m):
|
330 |
+
if x.shape[0] < x.shape[1]:
|
331 |
+
s0 = m
|
332 |
+
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
333 |
+
else:
|
334 |
+
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
335 |
+
s1 = m
|
336 |
+
new_max = min(s1, s0)
|
337 |
+
raw_max = min(x.shape[0], x.shape[1])
|
338 |
+
if new_max < raw_max:
|
339 |
+
interpolation = cv2.INTER_AREA
|
340 |
+
else:
|
341 |
+
interpolation = cv2.INTER_LANCZOS4
|
342 |
+
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
343 |
+
return y
|
344 |
+
|
345 |
+
|
346 |
+
def cli_norm(sketch):
|
347 |
+
light = np.max(min_resize(sketch, 64), axis=(0, 1), keepdims=True)
|
348 |
+
intensity = (light - sketch.astype(np.float32)).clip(0, 255)
|
349 |
+
line_intensities = np.sort(intensity[intensity > 16])[::-1]
|
350 |
+
line_quantity = float(line_intensities.shape[0])
|
351 |
+
intensity /= line_intensities[int(line_quantity * 0.1)]
|
352 |
+
intensity *= 0.9
|
353 |
+
return (255.0 - intensity * 255.0).clip(0, 255).astype(np.uint8)
|
354 |
+
|
355 |
+
|
356 |
+
def cv2_imwrite(a, b):
|
357 |
+
print(a)
|
358 |
+
cv2.imwrite(a, b)
|
359 |
+
|
360 |
+
|
361 |
+
def from_png_to_jpg(map):
|
362 |
+
if map.shape[2] == 3:
|
363 |
+
return map
|
364 |
+
color = map[:, :, 0:3].astype(np.float) / 255.0
|
365 |
+
alpha = map[:, :, 3:4].astype(np.float) / 255.0
|
366 |
+
reversed_color = 1 - color
|
367 |
+
final_color = (255.0 - reversed_color * alpha * 255.0).clip(0, 255).astype(np.uint8)
|
368 |
+
return final_color
|
369 |
+
|
370 |
+
|
371 |
+
def s_enhance(x, k=2.0):
|
372 |
+
p = cv2.cvtColor(x, cv2.COLOR_RGB2HSV).astype(np.float)
|
373 |
+
p[:, :, 1] *= k
|
374 |
+
p = p.clip(0, 255).astype(np.uint8)
|
375 |
+
return cv2.cvtColor(p, cv2.COLOR_HSV2RGB).clip(0, 255)
|
376 |
+
|
377 |
+
|
378 |
+
def ini_hint(x):
|
379 |
+
r = np.zeros(shape=(x.shape[0], x.shape[1], 4), dtype=np.uint8)
|
380 |
+
return r
|
381 |
+
|
382 |
+
|
383 |
+
def opreate_normal_hint(gird, points, length):
|
384 |
+
h = gird.shape[0]
|
385 |
+
w = gird.shape[1]
|
386 |
+
for point in points:
|
387 |
+
x, y, r, g, b = point
|
388 |
+
x = int(x * w)
|
389 |
+
y = int(y * h)
|
390 |
+
l_ = max(0, x - length)
|
391 |
+
b_ = max(0, y - length)
|
392 |
+
r_ = min(w, x + length + 1)
|
393 |
+
t_ = min(h, y + length + 1)
|
394 |
+
gird[b_:t_, l_:r_, 2] = r
|
395 |
+
gird[b_:t_, l_:r_, 1] = g
|
396 |
+
gird[b_:t_, l_:r_, 0] = b
|
397 |
+
gird[b_:t_, l_:r_, 3] = 255.0
|
398 |
+
return gird
|
399 |
+
|
400 |
+
|
401 |
+
def get_hdr(x):
|
402 |
+
def get_hdr_g(x):
|
403 |
+
img = x.astype(np.float32)
|
404 |
+
mean = np.mean(img)
|
405 |
+
h_mean = mean.copy()
|
406 |
+
l_mean = mean.copy()
|
407 |
+
for i in range(2):
|
408 |
+
h_mean = np.mean(img[img >= h_mean])
|
409 |
+
l_mean = np.mean(img[img <= l_mean])
|
410 |
+
for i in range(2):
|
411 |
+
l_mean = np.mean(img[img <= l_mean])
|
412 |
+
return l_mean, mean, h_mean
|
413 |
+
|
414 |
+
l_mean = np.zeros(shape=(1, 1, 3), dtype=np.float32)
|
415 |
+
mean = np.zeros(shape=(1, 1, 3), dtype=np.float32)
|
416 |
+
h_mean = np.zeros(shape=(1, 1, 3), dtype=np.float32)
|
417 |
+
for c in range(3):
|
418 |
+
l, m, h = get_hdr_g(x[:, :, c])
|
419 |
+
l_mean[:, :, c] = l
|
420 |
+
mean[:, :, c] = m
|
421 |
+
h_mean[:, :, c] = h
|
422 |
+
return l_mean, mean, h_mean
|
423 |
+
|
424 |
+
|
425 |
+
def f2(x1, x2, x3, y1, y2, y3, x):
|
426 |
+
A = y1 * ((x - x2) * (x - x3)) / ((x1 - x2) * (x1 - x3))
|
427 |
+
B = y2 * ((x - x1) * (x - x3)) / ((x2 - x1) * (x2 - x3))
|
428 |
+
C = y3 * ((x - x1) * (x - x2)) / ((x3 - x1) * (x3 - x2))
|
429 |
+
return A + B + C
|
430 |
+
|
431 |
+
|
432 |
+
print('Tricks loaded.')
|
433 |
+
|
434 |
+
|
435 |
+
def refine_image(image, sketch, origin):
|
436 |
+
verbose = False
|
437 |
+
|
438 |
+
def cv_log(name, img):
|
439 |
+
if verbose:
|
440 |
+
print(name)
|
441 |
+
cv2.imshow('cv_log', img.clip(0, 255).astype(np.uint8))
|
442 |
+
cv2.imwrite('cv_log.png', img.clip(0, 255).astype(np.uint8))
|
443 |
+
cv2.waitKey(0)
|
444 |
+
|
445 |
+
print('Building Sparse Matrix ...')
|
446 |
+
sketch = sketch.astype(np.float32)
|
447 |
+
sparse_matrix = build_sketch_sparse(sketch, True)
|
448 |
+
bright_matrix = build_sketch_sparse(sketch - cv2.GaussianBlur(sketch, (0, 0), 3.0), False)
|
449 |
+
guided_matrix = createGuidedFilter(sketch.clip(0, 255).astype(np.uint8), 1, 0.01)
|
450 |
+
HDRL, HDRM, HDRH = get_hdr(image)
|
451 |
+
|
452 |
+
def go_guide(x):
|
453 |
+
y = x + (x - cv2.GaussianBlur(x, (0, 0), 1)) * 2.0
|
454 |
+
for _ in tqdm(range(4)):
|
455 |
+
y = guided_matrix.filter(y)
|
456 |
+
return y
|
457 |
+
|
458 |
+
def go_refine_sparse(x):
|
459 |
+
return session.run(tf_sparse_op_H, feed_dict={ipsp3: x, ipsp9: sparse_matrix})
|
460 |
+
|
461 |
+
def go_refine_bright(x):
|
462 |
+
return session.run(tf_sparse_op_L, feed_dict={ipsp3: x, ipsp9: bright_matrix})
|
463 |
+
|
464 |
+
def go_flat(x):
|
465 |
+
pia = 32
|
466 |
+
y = x.clip(0, 255).astype(np.uint8)
|
467 |
+
y = cv2.resize(y, (x.shape[1] // 2, x.shape[0] // 2), interpolation=cv2.INTER_AREA)
|
468 |
+
y = np.pad(y, ((pia, pia), (pia, pia), (0, 0)), 'reflect')
|
469 |
+
y = l0Smooth(y, None, 0.01)
|
470 |
+
y = y[pia:-pia, pia:-pia, :]
|
471 |
+
y = cv2.resize(y, (x.shape[1], x.shape[0]), interpolation=cv2.INTER_CUBIC)
|
472 |
+
return y
|
473 |
+
|
474 |
+
def go_hdr(x):
|
475 |
+
xl, xm, xh = get_hdr(x)
|
476 |
+
y = f2(xl, xm, xh, HDRL, HDRM, HDRH, x)
|
477 |
+
return y.clip(0, 255)
|
478 |
+
|
479 |
+
def go_blend(BGR, X, m):
|
480 |
+
BGR = BGR.clip(0, 255).astype(np.uint8)
|
481 |
+
X = X.clip(0, 255).astype(np.uint8)
|
482 |
+
YUV = cv2.cvtColor(BGR, cv2.COLOR_BGR2YUV)
|
483 |
+
s_l = YUV[:, :, 0].astype(np.float32)
|
484 |
+
t_l = X.astype(np.float32)
|
485 |
+
r_l = (s_l * t_l / 255.0) if m else np.minimum(s_l, t_l)
|
486 |
+
YUV[:, :, 0] = r_l.clip(0, 255).astype(np.uint8)
|
487 |
+
return cv2.cvtColor(YUV, cv2.COLOR_YUV2BGR)
|
488 |
+
|
489 |
+
print('Getting Target ...')
|
490 |
+
smoothed = d_resize(image, sketch.shape)
|
491 |
+
print('Global Optimization ...')
|
492 |
+
cv_log('smoothed', smoothed)
|
493 |
+
sparse_smoothed = go_refine_sparse(smoothed)
|
494 |
+
cv_log('smoothed', sparse_smoothed)
|
495 |
+
smoothed = go_guide(sparse_smoothed)
|
496 |
+
cv_log('smoothed', smoothed)
|
497 |
+
smoothed = go_hdr(smoothed)
|
498 |
+
cv_log('smoothed', smoothed)
|
499 |
+
print('Decomposition Optimization ...')
|
500 |
+
flat = sparse_smoothed.copy()
|
501 |
+
cv_log('flat', flat)
|
502 |
+
flat = go_refine_bright(flat)
|
503 |
+
cv_log('flat', flat)
|
504 |
+
flat = go_flat(flat)
|
505 |
+
cv_log('flat', flat)
|
506 |
+
flat = go_refine_sparse(flat)
|
507 |
+
cv_log('flat', flat)
|
508 |
+
flat = go_guide(flat)
|
509 |
+
cv_log('flat', flat)
|
510 |
+
flat = go_hdr(flat)
|
511 |
+
cv_log('flat', flat)
|
512 |
+
print('Blending Optimization ...')
|
513 |
+
cv_log('origin', origin)
|
514 |
+
blended_smoothed = go_blend(smoothed, origin, False)
|
515 |
+
cv_log('blended_smoothed', blended_smoothed)
|
516 |
+
blended_flat = go_blend(flat, origin, True)
|
517 |
+
cv_log('blended_flat', blended_flat)
|
518 |
+
print('Optimization finished.')
|
519 |
+
return smoothed, flat, blended_smoothed, blended_flat
|
520 |
+
|
521 |
+
|
522 |
+
print('Fundamental Methods loaded.')
|
523 |
+
|
524 |
+
|
525 |
+
def cv2_encode(image: np.ndarray):
|
526 |
+
if image is None:
|
527 |
+
return 'null'
|
528 |
+
_, data = cv2.imencode('.png', image)
|
529 |
+
return 'data:image/png;base64,' + base64.b64encode(data).decode('utf8')
|
530 |
+
|
531 |
+
|
532 |
+
def get_request_image(request, name):
|
533 |
+
img = request.get(name)
|
534 |
+
img = re.sub('^data:image/.+;base64,', '', img)
|
535 |
+
img = base64.b64decode(img)
|
536 |
+
img = np.fromstring(img, dtype=np.uint8)
|
537 |
+
img = cv2.imdecode(img, -1)
|
538 |
+
return img
|
539 |
+
|
540 |
+
|
541 |
+
def upload_sketch(json_str, history):
|
542 |
+
request = json.loads(json_str)
|
543 |
+
origin = from_png_to_jpg(get_request_image(request, 'sketch'))
|
544 |
+
ID = datetime.datetime.now().strftime('H%HM%MS%S')
|
545 |
+
print('New room ID: ' + ID)
|
546 |
+
sketch = min_resize(origin, 512)
|
547 |
+
sketch = np.min(sketch, axis=2)
|
548 |
+
sketch = cli_norm(sketch)
|
549 |
+
sketch = np.tile(sketch[:, :, None], [1, 1, 3])
|
550 |
+
sketch = go_tail(sketch)
|
551 |
+
sketch = np.mean(sketch, axis=2)
|
552 |
+
if len(history) > 5:
|
553 |
+
history = history[-5:]
|
554 |
+
return ID + '_' + ID, [*history, {'ID': ID, 'origin': origin, 'sketch': sketch, 'results': {}}]
|
555 |
+
|
556 |
+
|
557 |
+
def request_result(json_str, history):
|
558 |
+
request = json.loads(json_str)
|
559 |
+
room = request.get("room")
|
560 |
+
ridx = next(i for i, his in enumerate(history) if his['ID'] == room)
|
561 |
+
room_path = './rooms/' + room + '/'
|
562 |
+
ID = datetime.datetime.now().strftime('H%HM%MS%S')
|
563 |
+
history[ridx]['results'][ID] = {}
|
564 |
+
points = request.get("points")
|
565 |
+
points = json.loads(points)
|
566 |
+
history[ridx]['results'][ID]['points'] = points
|
567 |
+
for _ in range(len(points)):
|
568 |
+
points[_][1] = 1 - points[_][1]
|
569 |
+
sketch = history[ridx]['sketch']
|
570 |
+
origin = history[ridx]['origin']
|
571 |
+
if origin.ndim == 3:
|
572 |
+
origin = cv2.cvtColor(origin, cv2.COLOR_BGR2GRAY)
|
573 |
+
origin = d_resize(origin, sketch.shape).astype(np.float32)
|
574 |
+
low_origin = cv2.GaussianBlur(origin, (0, 0), 3.0)
|
575 |
+
high_origin = origin - low_origin
|
576 |
+
low_origin = (low_origin / np.median(low_origin) * 255.0).clip(0, 255)
|
577 |
+
origin = (low_origin + high_origin).clip(0, 255).astype(np.uint8)
|
578 |
+
faceID = int(request.get("faceID")) - 65535
|
579 |
+
print(faceID)
|
580 |
+
if faceID > -1:
|
581 |
+
print('Default reference.')
|
582 |
+
face = from_png_to_jpg(refs_img_g[faceID])
|
583 |
+
else:
|
584 |
+
print('Load reference.')
|
585 |
+
face = from_png_to_jpg(get_request_image(request, 'face'))
|
586 |
+
face = s_enhance(face, 2.0)
|
587 |
+
print('request result room = ' + str(room) + ', ID = ' + str(ID))
|
588 |
+
print('processing painting in ' + room_path)
|
589 |
+
sketch_1024 = k_resize(sketch, 64)
|
590 |
+
hints_1024 = opreate_normal_hint(ini_hint(sketch_1024), points, length=2)
|
591 |
+
careless = go_head(sketch_1024, k_resize(face, 14), hints_1024)
|
592 |
+
smoothed_careless, flat_careless, blended_smoothed_careless, blended_flat_careless = refine_image(careless, sketch,
|
593 |
+
origin)
|
594 |
+
history[ridx]['results'][ID]['smoothed_careless'] = smoothed_careless
|
595 |
+
history[ridx]['results'][ID]['flat_careless'] = flat_careless
|
596 |
+
history[ridx]['results'][ID]['blended_smoothed_careless'] = blended_smoothed_careless
|
597 |
+
history[ridx]['results'][ID]['blended_flat_careless'] = blended_flat_careless
|
598 |
+
print('Stage I finished.')
|
599 |
+
careful = go_render(sketch_1024, d_resize(flat_careless, sketch_1024.shape, 0.5), hints_1024)
|
600 |
+
smoothed_careful, flat_careful, blended_smoothed_careful, blended_flat_careful = refine_image(careful, sketch,
|
601 |
+
origin)
|
602 |
+
history[ridx]['results'][ID]['smoothed_careful'] = smoothed_careful
|
603 |
+
history[ridx]['results'][ID]['flat_careful'] = flat_careful
|
604 |
+
history[ridx]['results'][ID]['blended_smoothed_careful'] = blended_smoothed_careful
|
605 |
+
history[ridx]['results'][ID]['blended_flat_careful'] = blended_flat_careful
|
606 |
+
history[ridx]['results'][ID]['lighted'] = blended_flat_careful
|
607 |
+
print('Stage II finished.')
|
608 |
+
return room + '_' + ID, history
|
609 |
+
|
610 |
+
|
611 |
+
def download_result(json_str, history):
|
612 |
+
request = json.loads(json_str)
|
613 |
+
room = request.get("room")
|
614 |
+
step = request.get("step")
|
615 |
+
name = request.get("name")
|
616 |
+
ridx = next(i for i, his in enumerate(history) if his['ID'] == room)
|
617 |
+
if history[ridx].get(name, None) is None:
|
618 |
+
result = history[ridx]['results'][step][name]
|
619 |
+
else:
|
620 |
+
result = history[ridx][name]
|
621 |
+
|
622 |
+
if name == 'points':
|
623 |
+
return json.dumps(result)
|
624 |
+
|
625 |
+
return cv2_encode(result)
|
626 |
+
|
627 |
+
|
628 |
+
with gr.Blocks() as demo:
|
629 |
+
history = gr.State(value=[])
|
630 |
+
with gr.Row():
|
631 |
+
with gr.Column():
|
632 |
+
btn_show = gr.Button("Open Style2Paints V4.6")
|
633 |
+
btn_show.click(None, _js="(_) => open('file/ui/web-mobile/index.html')")
|
634 |
+
|
635 |
+
with gr.Row():
|
636 |
+
with gr.Box():
|
637 |
+
with gr.Row():
|
638 |
+
upload_sketch_json = gr.Textbox(label="upload_sketch(json string)")
|
639 |
+
with gr.Row():
|
640 |
+
upload_sketch_btn = gr.Button(label="Submit sketch json")
|
641 |
+
with gr.Row():
|
642 |
+
upload_sketch_result = gr.Textbox(label="Result", interactive=False)
|
643 |
+
upload_sketch_btn.click(upload_sketch, [upload_sketch_json, history], [upload_sketch_result, history], api_name="upload_sketch")
|
644 |
+
|
645 |
+
with gr.Box():
|
646 |
+
with gr.Row():
|
647 |
+
request_result_json = gr.Textbox(label="request_result(json string)")
|
648 |
+
with gr.Row():
|
649 |
+
request_result_btn = gr.Button(label="Submit json of request for result")
|
650 |
+
with gr.Row():
|
651 |
+
request_result_result = gr.Textbox(label="Result", interactive=False)
|
652 |
+
upload_sketch_btn.click(request_result, [request_result_json, history], [request_result_result, history], api_name="request_result")
|
653 |
+
|
654 |
+
with gr.Box():
|
655 |
+
with gr.Row():
|
656 |
+
download_result_json = gr.Textbox(label="download_result(json string)")
|
657 |
+
with gr.Row():
|
658 |
+
download_result_btn = gr.Button(label="Submit json of download for result")
|
659 |
+
with gr.Row():
|
660 |
+
download_result_result = gr.Textbox(label="Result", interactive=False)
|
661 |
+
upload_sketch_btn.click(download_result, [download_result_json, history], [download_result_result], api_name="download_result")
|
662 |
+
|
663 |
+
demo.launch()
|
nets/gau.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3297028c7d29078be7722bca9b68b119f852794741cfb4185b990e1c469ecbae
|
3 |
+
size 324
|
nets/head.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5f608bf5511293cd582e6d87e55f483259b8d606feba7a5042382a19cde630
|
3 |
+
size 411622416
|
nets/inception.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a503841e955ee56f2e0b71219952f0f554c9eaff9e887f82853f600f0ddee80
|
3 |
+
size 41501888
|
nets/neck.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e91e4e688379dc95a14ea8f33fa1c2141584b0387e16be5efcc7acb5299ad5d7
|
3 |
+
size 411623808
|
nets/reader.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a65a53091acb96dbdcf325afb1b233ff374e220cb822fe8b1771dcd65f999df
|
3 |
+
size 41502832
|
nets/refs.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92e95f226cb67abd309014b50eff810fef25e6cf3731aacea4efa3254c0a6adc
|
3 |
+
size 18324023
|
nets/render_head.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cacac78d2e19bd38b2efbdd8eb372594e333e5284e9f2c2b605652c8dd26ffad
|
3 |
+
size 411612752
|
nets/render_neck.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66050656839363d7977dd970cc2f6d7f81722a8cf5cd67a1793bae8214a07c0b
|
3 |
+
size 411613336
|
nets/tail.net
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2255073ccdc311d8c61c074ffeb4ad7db200ca9116011e1cf213d6d4b1967e15
|
3 |
+
size 4018208
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-contrib-python>=4.1.0.25
|
2 |
+
tensorflow>=2.12.0
|
3 |
+
gradio>=3.20.1
|
4 |
+
scikit-learn>=0.23.1
|
5 |
+
scikit-image>=0.14.5
|
6 |
+
tqdm
|
res/Texture/1.jpg
ADDED
Git LFS Details
|
res/Texture/127.png
ADDED
Git LFS Details
|
res/Texture/ai.png
ADDED
Git LFS Details
|
res/Texture/b.png
ADDED
Git LFS Details
|
res/Texture/big_logo.png
ADDED
Git LFS Details
|
res/Texture/board.png
ADDED
Git LFS Details
|
res/Texture/brush.png
ADDED
Git LFS Details
|
res/Texture/circle.png
ADDED
Git LFS Details
|
res/Texture/clear.png
ADDED
Git LFS Details
|
res/Texture/downloadh.png
ADDED
Git LFS Details
|
res/Texture/drag.png
ADDED
Git LFS Details
|
res/Texture/dropper.png
ADDED
Git LFS Details
|
res/Texture/dustbin.png
ADDED
Git LFS Details
|
res/Texture/eraser.png
ADDED
Git LFS Details
|
res/Texture/fil.png
ADDED
Git LFS Details
|
res/Texture/filled-circle.png
ADDED
Git LFS Details
|
res/Texture/folder.png
ADDED
Git LFS Details
|
res/Texture/girl.png
ADDED
Git LFS Details
|
res/Texture/girl_raw.png
ADDED
Git LFS Details
|
res/Texture/github.png
ADDED
Git LFS Details
|
res/Texture/grids.png
ADDED
Git LFS Details
|
res/Texture/help.png
ADDED
Git LFS Details
|
res/Texture/hint.png
ADDED
Git LFS Details
|
res/Texture/left-arrow.png
ADDED
Git LFS Details
|
res/Texture/left.png
ADDED
Git LFS Details
|
res/Texture/loading.png
ADDED
Git LFS Details
|
res/Texture/magic.png
ADDED
Git LFS Details
|
res/Texture/pallete.png
ADDED
Git LFS Details
|
res/Texture/pencil.png
ADDED
Git LFS Details
|
res/Texture/ref.png
ADDED
Git LFS Details
|
res/Texture/refresh.png
ADDED
Git LFS Details
|
res/Texture/result.png
ADDED
Git LFS Details
|
res/Texture/right-arrow.png
ADDED
Git LFS Details
|
res/Texture/right.png
ADDED
Git LFS Details
|
res/Texture/ring.png
ADDED
Git LFS Details
|
res/Texture/s.png
ADDED
Git LFS Details
|
res/Texture/sketch.png
ADDED
Git LFS Details
|
res/Texture/skilled.png
ADDED
Git LFS Details
|