|
import re |
|
import logging |
|
|
|
from haystack.document_stores import ElasticsearchDocumentStore |
|
from haystack.utils import launch_es,print_answers |
|
from haystack.nodes import FARMReader,TransformersReader,BM25Retriever |
|
from haystack.pipelines import ExtractiveQAPipeline |
|
from haystack.nodes import TextConverter,PDFToTextConverter,PreProcessor |
|
from haystack.utils import convert_files_to_docs, fetch_archive_from_http |
|
from Reader import PdfReader,ExtractedText |
|
|
|
launch_es() |
|
|
|
|
|
|
|
|
|
"""Install the latest main of Haystack""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"Run this script from the root of the project" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING) |
|
logging.getLogger("haystack").setLevel(logging.INFO) |
|
|
|
class Connection: |
|
def __init__(self,host="localhost",username="",password="",index="document"): |
|
""" |
|
host: Elasticsearch host. If no host is provided, the default host "localhost" is used. |
|
|
|
port: Elasticsearch port. If no port is provided, the default port 9200 is used. |
|
|
|
username: Elasticsearch username. If no username is provided, no username is used. |
|
|
|
password: Elasticsearch password. If no password is provided, no password is used. |
|
|
|
index: Elasticsearch index. If no index is provided, the default index "document" is used. |
|
""" |
|
self.host=host |
|
self.username=username |
|
self.password=password |
|
self.index=index |
|
|
|
def get_connection(self): |
|
document_store=ElasticsearchDocumentStore(host=self.host,username=self.username,password=self.password,index=self.index) |
|
return document_store |
|
|
|
class QAHaystack: |
|
def __init__(self, filename): |
|
self.filename=filename |
|
|
|
def preprocessing(self,data): |
|
""" |
|
This function is used to preprocess the data. Its a simple function which removes the special characters and converts the data to lower case. |
|
""" |
|
|
|
converter = TextConverter(remove_numeric_tables=True, valid_languages=["en"]) |
|
doc_txt = converter.convert(file_path=ExtractedText(self.filename,'data.txt').save(4,6), meta=None)[0] |
|
|
|
converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) |
|
doc_pdf = converter.convert(file_path="data/tutorial8/manibook.pdf", meta=None)[0] |
|
|
|
preprocess_text=data.lower() |
|
preprocess_text = re.sub(r'\s+', ' ', preprocess_text) |
|
return preprocess_text |
|
|
|
def convert_to_document(self,data): |
|
|
|
""" |
|
Write the data to a text file. This is required since the haystack library requires the data to be in a text file so that it can then be converted to a document. |
|
""" |
|
data=self.preprocessing(data) |
|
with open(self.filename,'w') as f: |
|
f.write(data) |
|
|
|
""" |
|
Read the data from the text file. |
|
""" |
|
data=self.preprocessing(data) |
|
with open(self.filename,'r') as f: |
|
data=f.read() |
|
data=data.split("\n") |
|
|
|
""" |
|
DocumentStores expect Documents in dictionary form, like that below. They are loaded using the DocumentStore.write_documents() |
|
|
|
dicts=[ |
|
{ |
|
'content': DOCUMENT_TEXT_HERE, |
|
'meta':{'name': DOCUMENT_NAME,...} |
|
},... |
|
] |
|
|
|
(Optionally: you can also add more key-value-pairs here, that will be indexed as fields in Elasticsearch and can be accessed later for filtering or shown in the responses of the Pipeline) |
|
""" |
|
data_json=[{ |
|
'content':paragraph, |
|
'meta':{ |
|
'name':self.filename |
|
} |
|
} for paragraph in data |
|
] |
|
|
|
document_store=Connection().get_connection() |
|
document_store.write_documents(data_json) |
|
return document_store |
|
|
|
|
|
class Pipeline: |
|
def __init__(self,filename,retriever=BM25Retriever,reader=FARMReader): |
|
self.reader=reader |
|
self.retriever=retriever |
|
self.filename=filename |
|
|
|
def get_prediction(self,data,query): |
|
""" |
|
Retrievers help narrowing down the scope for the Reader to smaller units of text where a given question could be answered. They use some simple but fast algorithm. |
|
|
|
Here: We use Elasticsearch's default BM25 algorithm . I'll check out the other retrievers as well. |
|
""" |
|
retriever=self.retriever(document_store=QAHaystack(self.filename).convert_to_document(data)) |
|
|
|
""" |
|
Readers scan the texts returned by retrievers in detail and extract k best answers. They are based on powerful, but slower deep learning models.Haystack currently supports Readers based on the frameworks FARM and Transformers. |
|
""" |
|
reader = self.reader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True) |
|
|
|
""" |
|
With a Haystack Pipeline we can stick together your building blocks to a search pipeline. Under the hood, Pipelines are Directed Acyclic Graphs (DAGs) that you can easily customize for our own use cases. To speed things up, Haystack also comes with a few predefined Pipelines. One of them is the ExtractiveQAPipeline that combines a retriever and a reader to answer our questions. |
|
""" |
|
pipe = ExtractiveQAPipeline(reader, retriever) |
|
|
|
""" |
|
This function is used to get the prediction from the pipeline. |
|
""" |
|
prediction = pipe.run(query=query, params={"Retriever":{"top_k":10}, "Reader":{"top_k":5}}) |
|
return prediction |