Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import torch | |
| try: | |
| import flash_attn_interface | |
| def is_hopper_gpu(): | |
| if not torch.cuda.is_available(): | |
| return False | |
| device_name = torch.cuda.get_device_name(0).lower() | |
| return "h100" in device_name or "hopper" in device_name | |
| FLASH_ATTN_3_AVAILABLE = is_hopper_gpu() | |
| except ModuleNotFoundError: | |
| FLASH_ATTN_3_AVAILABLE = False | |
| try: | |
| import flash_attn | |
| FLASH_ATTN_2_AVAILABLE = True | |
| except ModuleNotFoundError: | |
| FLASH_ATTN_2_AVAILABLE = False | |
| # FLASH_ATTN_3_AVAILABLE = False | |
| import warnings | |
| __all__ = [ | |
| 'flash_attention', | |
| 'attention', | |
| ] | |
| def flash_attention( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p=0., | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal=False, | |
| window_size=(-1, -1), | |
| deterministic=False, | |
| dtype=torch.bfloat16, | |
| version=None, | |
| ): | |
| """ | |
| q: [B, Lq, Nq, C1]. | |
| k: [B, Lk, Nk, C1]. | |
| v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
| q_lens: [B]. | |
| k_lens: [B]. | |
| dropout_p: float. Dropout probability. | |
| softmax_scale: float. The scaling of QK^T before applying softmax. | |
| causal: bool. Whether to apply causal attention mask. | |
| window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
| deterministic: bool. If True, slightly slower and uses more memory. | |
| dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
| """ | |
| half_dtypes = (torch.float16, torch.bfloat16) | |
| assert dtype in half_dtypes | |
| assert q.device.type == 'cuda' and q.size(-1) <= 256 | |
| # params | |
| b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
| def half(x): | |
| return x if x.dtype in half_dtypes else x.to(dtype) | |
| # preprocess query | |
| if q_lens is None: | |
| q = half(q.flatten(0, 1)) | |
| q_lens = torch.tensor( | |
| [lq] * b, dtype=torch.int32).to( | |
| device=q.device, non_blocking=True) | |
| else: | |
| q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
| # preprocess key, value | |
| if k_lens is None: | |
| k = half(k.flatten(0, 1)) | |
| v = half(v.flatten(0, 1)) | |
| k_lens = torch.tensor( | |
| [lk] * b, dtype=torch.int32).to( | |
| device=k.device, non_blocking=True) | |
| else: | |
| k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
| v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
| q = q.to(v.dtype) | |
| k = k.to(v.dtype) | |
| if q_scale is not None: | |
| q = q * q_scale | |
| if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
| warnings.warn( | |
| 'Flash attention 3 is not available, use flash attention 2 instead.' | |
| ) | |
| # apply attention | |
| if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
| # Note: dropout_p, window_size are not supported in FA3 now. | |
| x = flash_attn_interface.flash_attn_varlen_func( | |
| q=q, | |
| k=k, | |
| v=v, | |
| cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| max_seqlen_q=lq, | |
| max_seqlen_k=lk, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| deterministic=deterministic)[0].unflatten(0, (b, lq)) | |
| else: | |
| assert FLASH_ATTN_2_AVAILABLE | |
| x = flash_attn.flash_attn_varlen_func( | |
| q=q, | |
| k=k, | |
| v=v, | |
| cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
| 0, dtype=torch.int32).to(q.device, non_blocking=True), | |
| max_seqlen_q=lq, | |
| max_seqlen_k=lk, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| window_size=window_size, | |
| deterministic=deterministic).unflatten(0, (b, lq)) | |
| # output | |
| return x.type(out_dtype) | |
| def attention( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p=0., | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal=False, | |
| window_size=(-1, -1), | |
| deterministic=False, | |
| dtype=torch.bfloat16, | |
| fa_version=None, | |
| ): | |
| if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
| return flash_attention( | |
| q=q, | |
| k=k, | |
| v=v, | |
| q_lens=q_lens, | |
| k_lens=k_lens, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| q_scale=q_scale, | |
| causal=causal, | |
| window_size=window_size, | |
| deterministic=deterministic, | |
| dtype=dtype, | |
| version=fa_version, | |
| ) | |
| else: | |
| if q_lens is not None or k_lens is not None: | |
| warnings.warn( | |
| 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' | |
| ) | |
| attn_mask = None | |
| q = q.transpose(1, 2).to(dtype) | |
| k = k.transpose(1, 2).to(dtype) | |
| v = v.transpose(1, 2).to(dtype) | |
| out = torch.nn.functional.scaled_dot_product_attention( | |
| q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
| out = out.transpose(1, 2).contiguous() | |
| return out | |