MoDA-PLUS / src /models /audio /audio_processer.py
multimodalart's picture
Upload 247 files
7758cff verified
"""Audio processer for talking data.
Author: linzhihui.lzh
Date: 2024-12-12
"""
import os
from re import A
import sys
import os.path as osp
from typing import List, Dict, Tuple, Optional, Union, Any
import yaml
from omegaconf import OmegaConf
import math
import librosa
import numpy as np
from einops import rearrange
import torch
import torch.nn.functional as F
from pydub import AudioSegment
# from audio_separator.separator import Separator
sys.path.append(osp.dirname(osp.dirname(osp.dirname(osp.dirname(osp.realpath(__file__))))))
from src.utils.rprint import rlog as log
from src.utils.util import resample_audio
from src.models.audio.wav2vec_modified import Wav2VecModel
from src.models.audio.hubert import HubertModel
def pad_audio(audio, audio_unit=320, pad_threshold=80):
batch_size, audio_len = audio.shape
n_units = audio_len // audio_unit
side_len = math.ceil((audio_unit * n_units + pad_threshold - audio_len) / 2)
if side_len >= 0:
reflect_len = side_len // 2
replicate_len = side_len % 2
if reflect_len > 0:
audio = F.pad(audio, (reflect_len, reflect_len), mode='reflect')
audio = F.pad(audio, (reflect_len, reflect_len), mode='reflect')
if replicate_len > 0:
audio = F.pad(audio, (1, 1), mode='replicate')
return audio
def cut_audio(audio_path: str, save_dir: str, length=60) -> List[str]:
"""Cut audio into sub-divisions and return subfile paths. Supports wav format.
Args:
audio_path (str): the source audio file path
save_dir (str): the save directory of sub-divisions
length (int, optional): The max length of each sub-division. Defaults to 60 secs.
Returns:
List[str]: the subfile paths
"""
audio_name = osp.basename(audio_path).split('.')[0]
audio = AudioSegment.from_wav(audio_path)
segment_length = length * 1000. # pydub uses milliseconds
num_segments = math.ceil(len(audio) / segment_length)
os.makedirs(save_dir, exist_ok=True)
audio_list = []
for i in range(num_segments):
start_time = i * segment_length
end_time = min((i + 1) * segment_length, len(audio))
segment = audio[start_time:end_time]
path = osp.join(save_dir, f"{audio_name}_segment_{i+1}.wav")
audio_list.append(path)
segment.export(path, format="wav")
return audio_list
class AudioProcessor(object):
def __init__(self, cfg_path: str, is_training: bool = False) -> None:
cfg = OmegaConf.load(cfg_path)
self.cfg = cfg
self.is_training = is_training
log("========================================= Audio Processer =========================================")
log(OmegaConf.to_yaml(cfg))
# setting device
self.device_id = cfg.device_params.device_id
self.use_half = cfg.device_params.flag_use_half_precision
if cfg.device_params.flag_force_cpu:
self.device = 'cpu'
else:
try:
if torch.backends.mps.is_available():
self.device = 'mps'
else:
self.device = 'cuda:' + str(self.device_id)
except:
self.device = 'cuda:' + str(self.device_id)
# init audio separator
self.audio_separator = None
self.cache_dir = cfg.cache_dir
self.tmp_dir = cfg.tmp_dir
self.use_audio_separator = cfg.model_params.use_audio_separator
self.audio_separator_name = cfg.model_params.audio_separator_name
self.audio_separator_path = cfg.model_weights.audio_separator_path
self.set_audio_separator(cfg.cache_dir)
# load audio encoder, wav2vec or hubert
self.model_name = cfg.model_params.model_name
self.is_chinese = cfg.model_params.is_chinese
self.audio_encoder = self.load_model(
model_name = cfg.model_params.model_name,
model_type = cfg.model_params.model_type,
is_chinese = cfg.model_params.is_chinese,
)
self.only_last_features = cfg.model_params.only_last_features
if cfg.model_params.only_last_features:
self.feature_shape = (1, 768)
else:
self.feature_shape = (12, 768) # features of 12 blocks
# init data params
self.sample_strategy = cfg.data_params.sample_strategy
self.sample_rate = cfg.data_params.sample_rate
self.fps = cfg.data_params.fps
self.audio_unit = cfg.data_params.sample_rate / cfg.data_params.fps # num of audio samples per frame
self.max_length = cfg.data_params.max_length
self.subclip_len = cfg.data_params.sub_clip_length
self.save_to_cpu = cfg.data_params.save_to_cpu
self.pad_mode = cfg.data_params.audio_pad_mode
log("========================================= Audio Processer: Done =========================================")
def load_model(self, model_name: str="wav2vec", model_type: str="base", is_chinese: bool = False):
assert model_name in ["wav2vec", "hubert"], f"Unknown audio model {model_name}, only support wav2vec or hubert"
assert model_type in ["base", "large"], f"Unknown audio model type {model_type}, only support base or large"
if model_name == "wav2vec":
# load wav2vec model weights
if is_chinese:
if model_type == "base":
model_weight_path = self.cfg.model_weights.wav2vec_path.chinese.base
else:
model_weight_path = self.cfg.model_weights.wav2vec_path.chinese.large
else:
if model_type == "base":
model_weight_path = self.cfg.model_weights.wav2vec_path.default.base
else:
model_weight_path = self.cfg.model_weights.wav2vec_path.default.large
if model_weight_path is None:
raise ValueError(f"model_weight_path is None")
audio_encoder = Wav2VecModel.from_pretrained(model_weight_path, local_files_only=True).to(device=self.device)
else:
if is_chinese:
if model_type == "base":
model_weight_path = self.cfg.model_weights.hubert_path.chinese.base
else:
model_weight_path = self.cfg.model_weights.hubert_path.chinese.large
else:
if model_type == "base":
model_weight_path = self.cfg.model_weights.hubert_path.default.base
else:
model_weight_path = self.cfg.model_weights.hubert_path.default.large
if model_weight_path is None:
raise ValueError(f"model_weight_path is None")
audio_encoder = HubertModel.from_pretrained(model_weight_path, local_files_only=True).to(device=self.device)
log(f"{model_name}-{model_type}-chinese-{is_chinese} model has beed loaded from {model_weight_path}")
total_params = sum(p.numel() for p in audio_encoder.parameters())
print('Number of parameter: % .4fM' % (total_params / 1e6))
# weights initialization
audio_encoder.feature_extractor._freeze_parameters()
if not self.cfg.model_params.is_original:
frozen_layers = [0, 1]
for name, param in audio_encoder.named_parameters():
if name.startswith("feature_projection"):
param.requires_grad = False
if name.startswith("encoder.layers"):
layer = int(name.split(".")[2])
if layer in frozen_layers:
param.requires_grad = False
audio_encoder = audio_encoder.to(self.device)
if self.use_half:
audio_encoder = audio_encoder.half()
audio_encoder.eval()
return audio_encoder
def set_audio_separator(self, output_dir: str) -> None:
del self.audio_separator
if self.audio_separator_name is not None and self.use_audio_separator:
try:
os.makedirs(output_dir, exist_ok=True)
except OSError as _:
print("Fail to create the output cache dir.")
self.audio_separator = Separator(
output_dir=output_dir,
output_single_stem="vocals",
model_file_dir=self.audio_separator_path,
)
self.audio_separator.load_model(self.audio_separator_name)
assert self.audio_separator.model_instance is not None, "Fail to load audio separate model."
else:
self.audio_separator=None
log("Use audio directly without vocals seperator.")
def seperate_audio(self, audio_path: str, output_dir: Union[str, None] = None) -> str:
if output_dir is not None:
if output_dir != self.cache_dir:
# reload audio separator
self.set_audio_separator(output_dir)
if self.audio_separator is not None:
# 1. separate vocals
# TODO: process in memory
try:
outputs = self.audio_separator.separate(audio_path)
if len(outputs) <= 0:
raise RuntimeError("Audio separate failed.")
vocal_audio_file = outputs[0]
vocal_audio_name, _ = os.path.splitext(vocal_audio_file)
vocal_audio_file = os.path.join(self.audio_separator.output_dir, vocal_audio_file)
vocal_audio_file = resample_audio(vocal_audio_file, os.path.join(self.audio_separator.output_dir, f"{vocal_audio_name}-16k.wav"), self.sample_rate)
except Exception as e:
log(f"Fail to separate vocals from {audio_path}, error info [{e}]")
vocal_audio_file=audio_path
else:
vocal_audio_file=audio_path
return vocal_audio_file
def load_audio(self, audio_path: str, mono: bool = True, duration: Optional[float] = None) -> Any:
try:
audio_data, sampling_rate = librosa.load(audio_path, sr=self.sample_rate, mono=mono, duration=duration)
except Exception as e:
raise RuntimeError(f"Fail to load audio from {audio_path}, error info [{e}]")
return audio_data, sampling_rate
def prepare_audio_data(self, audio_data: Union[np.ndarray, torch.Tensor], n_frames: Optional[int]=None) -> Tuple[List[Any], int]:
"""Prepare audio data for processing.
"""
clip_len = int(len(audio_data) / self.audio_unit)
if n_frames is not None:
if abs(n_frames - clip_len) > 2:
log(f"The number of frames must be close to the clip length (in 80ms), got {n_frames} and {clip_len}")
return [], n_frames
clip_len = n_frames
else:
n_frames = clip_len
# normalize audio, replace Wav2Vec2FeatureExtractor
if isinstance(audio_data, np.ndarray):
audio_data = torch.from_numpy(audio_data).to(self.device)
assert audio_data.ndim == 1, 'Audio must be 1D tensor.'
audio_data = (audio_data - torch.mean(audio_data)) / (torch.std(audio_data) + 1e-7)
#log(f"audio loaded! {audio_data.shape}")
# padding
# padding audio to fit the clip length
n_audio_samples = round(self.audio_unit * clip_len)
n_padding_audio_samples = n_audio_samples - len(audio_data)
n_padding_frames = math.ceil(n_padding_audio_samples / self.audio_unit)
if n_padding_audio_samples > 0:
if self.pad_mode == 'zero':
padding_value = 0
elif self.pad_mode == 'replicate':
padding_value = float(audio_data[-1])
else:
raise ValueError(f'Unknown pad mode: {self.pad_mode}')
audio_data = F.pad(audio_data, (0, n_padding_audio_samples), value=padding_value)
# devide audio into sub-divisions for saving GPU memory
audio_segments = []
if clip_len <= self.subclip_len:
n_subdivision = 1
subclip_len = clip_len
else:
n_subdivision = math.ceil(clip_len / self.subclip_len)
subclip_len = self.subclip_len
for i in range(0, n_subdivision):
start_idx = i * subclip_len
end_idx = min(start_idx + subclip_len, clip_len)
# debug
#log(f"[{i+1}/{n_subdivision}] data index [{round(start_idx * self.audio_unit)}, {round(end_idx * self.audio_unit)})")
audio_segments.append(
{
"data": audio_data[round(start_idx * self.audio_unit):round(end_idx * self.audio_unit)].unsqueeze(0),
"start_idx": start_idx,
"end_idx": end_idx,
"length": end_idx - start_idx
}
)
return audio_segments, n_frames
def get_audio_embedding(self, audio, clip_len: int) -> torch.Tensor:
if audio.ndim == 2:
# Extract audio features
assert audio.shape[1] == 16000 * clip_len / self.fps, \
f'Incorrect audio length {audio.shape[1]}'
# Extract audio features
if self.use_half:
audio = audio.half()
embeddings = self.audio_encoder(
pad_audio(audio), seq_len=clip_len, sample_strategy=self.sample_strategy, output_hidden_states=True
) # (N, L, 768)
assert len(embeddings) > 0, "Fail to extract audio embedding"
if self.only_last_features:
audio_emb = embeddings.last_hidden_state.squeeze(0)
else:
audio_emb = torch.stack(
embeddings.hidden_states[1:], dim=1
).squeeze(0)
audio_emb = rearrange(audio_emb, "b s d -> s b d")
elif audio.ndim == 3:
assert audio.shape[1] == clip_len, f'Incorrect audio feature length {audio.shape[1]}'
audio_emb = audio
else:
raise ValueError(f'Incorrect audio input shape {audio.shape}')
return audio_emb
def get_audio_embeddings(self, audio_segments: List[Any]) -> Optional[torch.Tensor]:
audio_embs = []
for audio_segment in audio_segments:
if self.is_training:
audio_emb = self.get_audio_embedding(audio_segment["data"], audio_segment["length"])
else:
with torch.no_grad():
audio_emb = self.get_audio_embedding(audio_segment["data"], audio_segment["length"])
audio_emb = audio_emb.cpu() if self.save_to_cpu else audio_emb
audio_embs.append(audio_emb)
#log(f"audio segment [{audio_segment['start_idx']}, {audio_segment['end_idx']}) has been processed.")
if len(audio_embs) == 0:
return None
audio_emb = torch.cat(audio_embs, dim=0)
return audio_emb
def preprocess(
self,
audio_path: str,
n_frames: Optional[int] = None,
duration: Optional[float] = None,
need_seperate: bool = False
):
""" Preprocess a WAV audio file by separating the vocals from the background and resampling it to a 16 kHz sample rate.
The separated vocal track is then converted into wav2vec2 for further processing or analysis.
"""
if need_seperate:
vocal_audio_file = self.seperate_audio(audio_path)
else:
vocal_audio_file = audio_path
audio_data, sampling_rate = self.load_audio(vocal_audio_file, duration=duration)
assert sampling_rate == 16000, "The sample rate of audio must be 16000"
audio_segments, n_frames = self.prepare_audio_data(audio_data, n_frames)
audio_emb = self.get_audio_embeddings(audio_segments)
if audio_emb is None:
log(f"{audio_path} has been processed, but no audio embedding, set as 'None'.")
#else:
#log(f"{audio_path} has been processed, audio embedding shape {audio_emb.shape}.")
return audio_emb, n_frames
def preprocess_long(
self,
audio_path: str,
need_seperate: bool = False
):
audio_list = cut_audio(audio_path, self.tmp_dir, length=self.max_length)
audio_emb_list = []
l = 0
for idx, audio_path in enumerate(audio_list):
padding = (idx+1) == len(audio_list)
emb, length = self.preprocess(audio_path, need_seperate=need_seperate)
audio_emb_list.append(emb)
log(f"Processing audio {idx+1}/{len(audio_list)}, path: {audio_path} length: {length}")
l += length
audio_emb = torch.cat(audio_emb_list)
audio_length = l
# remove tmp file
for audio_path in audio_list:
os.remove(audio_path)
return audio_emb, audio_length
def __enter__(self):
return self