Spaces:
Runtime error
Runtime error
tabs
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassifica
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
model_name = "
|
10 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
11 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
12 |
print(device)
|
@@ -27,12 +27,37 @@ def inference(audio):
|
|
27 |
predicted_ids = torch.argmax(logits, dim=-1)
|
28 |
return model.config.id2label[predicted_ids.item()], logits, predicted_ids # Move tensors back to CPU for further processing
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
+
model_name = "Hatman/audio-emotion-detection"
|
10 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
11 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
12 |
print(device)
|
|
|
27 |
predicted_ids = torch.argmax(logits, dim=-1)
|
28 |
return model.config.id2label[predicted_ids.item()], logits, predicted_ids # Move tensors back to CPU for further processing
|
29 |
|
30 |
+
@spaces.GPU
|
31 |
+
def inference_label(audio):
|
32 |
+
example = preprocess_audio(audio)
|
33 |
+
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
34 |
+
inputs = inputs # Move inputs to GPU
|
35 |
+
with torch.no_grad():
|
36 |
+
logits = model(**inputs).logits
|
37 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
38 |
+
return model.config.id2label[predicted_ids.item()]
|
39 |
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown("# Audio Sentiment Analysis")
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
with gr.Tab("Label Only Inference"):
|
46 |
+
gr.Interface(
|
47 |
+
fn=inference_label,
|
48 |
+
inputs=gr.Audio(type="filepath"),
|
49 |
+
outputs=gr.Label(label="Predicted Sentiment"),
|
50 |
+
title="Audio Sentiment Analysis",
|
51 |
+
description="Upload an audio file or record one to get the predicted sentiment label."
|
52 |
+
)
|
53 |
+
|
54 |
+
with gr.Tab("Full Inference"):
|
55 |
+
gr.Interface(
|
56 |
+
fn=inference,
|
57 |
+
inputs=gr.Audio(type="filepath"),
|
58 |
+
outputs=[gr.Label(label="Predicted Sentiment"), gr.Textbox(label="Logits"), gr.Textbox(label="Predicted IDs")],
|
59 |
+
title="Audio Sentiment Analysis (Full)",
|
60 |
+
description="Upload an audio file or record one to analyze sentiment and get detailed results."
|
61 |
+
)
|
62 |
+
|
63 |
+
demo.launch(share=True)
|