Hatman's picture
tabs
4a065d2
import gradio as gr
import spaces
import torch
import torchaudio
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "Hatman/audio-emotion-detection"
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
print(device)
def preprocess_audio(audio):
waveform, sampling_rate = torchaudio.load(audio)
resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
@spaces.GPU
def inference(audio):
example = preprocess_audio(audio)
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
inputs = inputs # Move inputs to GPU
with torch.no_grad():
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
return model.config.id2label[predicted_ids.item()], logits, predicted_ids # Move tensors back to CPU for further processing
@spaces.GPU
def inference_label(audio):
example = preprocess_audio(audio)
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
inputs = inputs # Move inputs to GPU
with torch.no_grad():
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
return model.config.id2label[predicted_ids.item()]
with gr.Blocks() as demo:
gr.Markdown("# Audio Sentiment Analysis")
with gr.Tab("Label Only Inference"):
gr.Interface(
fn=inference_label,
inputs=gr.Audio(type="filepath"),
outputs=gr.Label(label="Predicted Sentiment"),
title="Audio Sentiment Analysis",
description="Upload an audio file or record one to get the predicted sentiment label."
)
with gr.Tab("Full Inference"):
gr.Interface(
fn=inference,
inputs=gr.Audio(type="filepath"),
outputs=[gr.Label(label="Predicted Sentiment"), gr.Textbox(label="Logits"), gr.Textbox(label="Predicted IDs")],
title="Audio Sentiment Analysis (Full)",
description="Upload an audio file or record one to analyze sentiment and get detailed results."
)
demo.launch(share=True)