en_to_indic_translation / legacy /tpu_training_instructions.md
harveen
Adding code
9bbf386
|
raw
history blame
3.85 kB

Instructions to run on Google cloud TPUs

Before starting these steps, make sure to prepare the dataset (normalization -> bpe -> .. -> binarization) following the steps in indicTrans workflow or do these steps on a cpu instance before launching the tpu instance (to save time and costs)

Creating TPU instance

  • Create a cpu instance on gcp with torch-xla image like:
gcloud compute --project=${PROJECT_ID} instances create <name for your instance> \
  --zone=<zone>  \
  --machine-type=n1-standard-16  \
  --image-family=torch-xla \
  --image-project=ml-images  \
  --boot-disk-size=200GB \
  --scopes=https://www.googleapis.com/auth/cloud-platform
  • Once the instance is created, Launch a Cloud TPU (from your cpu vm instance) using the following command (you can change the accelerator_type according to your needs):
gcloud compute tpus create <name for your TPU> \
--zone=<zone> \
--network=default \
--version=pytorch-1.7 \
--accelerator-type=v3-8
                                      (or)

Create a new tpu using the GUI in https://console.cloud.google.com/compute/tpus and make sure to select version as pytorch 1.7.

  • Once the tpu is launched, identify its ip address:
# you can run this inside cpu instance and note down the IP address which is located under the NETWORK_ENDPOINTS column
gcloud compute tpus list --zone=us-central1-a
                                      (or)

Go to https://console.cloud.google.com/compute/tpus and note down ip address for the created TPU from the interal ip column

Installing Fairseq, getting data on the cpu instance

  • Activate the torch xla 1.7 conda environment and install necessary libs for IndicTrans (Excluding FairSeq):
conda activate torch-xla-1.7
pip install sacremoses pandas mock sacrebleu tensorboardX pyarrow
  • Configure environment variables for TPU:
export TPU_IP_ADDRESS=ip-address; \
export XRT_TPU_CONFIG="tpu_worker;0;$TPU_IP_ADDRESS:8470"
  • Download the prepared binarized data for FairSeq

  • Clone the latest version of Fairseq (this supports tpu) and install from source. There is an issue with the latest commit and hence we use a different commit to install from source (This may have been fixed in the latest master but we have not tested it.)

git clone https://github.com/pytorch/fairseq.git
git checkout da9eaba12d82b9bfc1442f0e2c6fc1b895f4d35d
pip install --editable ./
  • Start TPU training
# this is for using all tpu cores
export MKL_SERVICE_FORCE_INTEL=1

fairseq-train   {expdir}/exp2_m2o_baseline/final_bin \
--max-source-positions=200 \
--max-target-positions=200 \
--max-update=1000000 \
--save-interval=5   \
--arch=transformer  \
--attention-dropout=0.1   \
--criterion=label_smoothed_cross_entropy   \
--source-lang=SRC   \
--lr-scheduler=inverse_sqrt   \
--skip-invalid-size-inputs-valid-test   \
--target-lang=TGT   \
--label-smoothing=0.1   \
--update-freq=1   \
--optimizer adam   \
--adam-betas '(0.9, 0.98)'   \
--warmup-init-lr 1e-07   \
--lr 0.0005   \
--warmup-updates 4000   \
--dropout 0.2 \
--weight-decay 0.0  \
--tpu \
--distributed-world-size 8   \
--max-tokens 8192 \
--num-batch-buckets 8 \
--tensorboard-logdir  {expdir}/exp2_m2o_baseline/tensorboard  \
--save-dir {expdir}/exp2_m2o_baseline/model \
--keep-last-epochs 5 \
--patience 5

Note While training, we noticed that the training was slower on tpus, compared to using multiple GPUs, we have documented some issues and filed an issue at fairseq repo for advice. We'll update this section as we learn more about efficient training on TPUs. Also feel free to open an issue/pull request if you find a bug or know an efficient method to make code train faster on tpus.