|
from PyPDF2 import PdfReader |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.vectorstores import FAISS |
|
import streamlit as st |
|
from dotenv import load_dotenv,find_dotenv |
|
from streamlit_extras.add_vertical_space import add_vertical_space |
|
import pickle |
|
import os |
|
|
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.llms import OpenAI |
|
|
|
|
|
with st.sidebar: |
|
st.title('PDF Q&A') |
|
st.markdown(''' |
|
## About |
|
This app is an LLM-powered chatbot built using: |
|
- [Streamlit](https://streamlit.io/) |
|
- [LangChain](https://python.langchain.com/) |
|
- [OpenAI](https://platform.openai.com/docs/models) LLM model |
|
|
|
''') |
|
add_vertical_space(5) |
|
st.write('Made by Harshit') |
|
|
|
def main(): |
|
st.header("Q&A from Pdfs: ") |
|
|
|
|
|
load_dotenv(find_dotenv()) |
|
|
|
pdf_reader = PdfReader('48lawsofpower.pdf') |
|
|
|
|
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
|
|
text_splitter = CharacterTextSplitter( |
|
separator = "\n", |
|
chunk_size = 1000, |
|
chunk_overlap = 200, |
|
length_function = len, |
|
) |
|
|
|
chunks = text_splitter.split_text(text= text) |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
document_search = FAISS.from_texts(chunks, embeddings) |
|
|
|
|
|
query = st.text_input("Ask your questions: ") |
|
|
|
docs = document_search.similarity_search(query=query) |
|
|
|
llm = OpenAI() |
|
chain = load_qa_chain(llm=llm, chain_type="stuff") |
|
response = chain.run(input_documents=docs, question=query) |
|
st.write(response) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|