Harshit-Pradhan commited on
Commit
b370feb
·
verified ·
1 Parent(s): 26679e5

Upload 3 files

Browse files
Files changed (3) hide show
  1. 48lawsofpower.pdf +0 -0
  2. app.py +68 -0
  3. requirements.txt +9 -0
48lawsofpower.pdf ADDED
Binary file (105 kB). View file
 
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PyPDF2 import PdfReader
2
+ from langchain.embeddings.openai import OpenAIEmbeddings
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.vectorstores import FAISS
5
+ import streamlit as st
6
+ from dotenv import load_dotenv,find_dotenv
7
+ from streamlit_extras.add_vertical_space import add_vertical_space
8
+ import pickle
9
+ import os
10
+
11
+ from langchain.chains.question_answering import load_qa_chain
12
+ from langchain.llms import OpenAI
13
+
14
+ ## Slide-bar
15
+ with st.sidebar:
16
+ st.title('PDF Q&A')
17
+ st.markdown('''
18
+ ## About
19
+ This app is an LLM-powered chatbot built using:
20
+ - [Streamlit](https://streamlit.io/)
21
+ - [LangChain](https://python.langchain.com/)
22
+ - [OpenAI](https://platform.openai.com/docs/models) LLM model
23
+
24
+ ''')
25
+ add_vertical_space(5)
26
+ st.write('Made by Harshit')
27
+
28
+ def main():
29
+ st.header("Q&A from Pdfs: ")
30
+
31
+
32
+ load_dotenv(find_dotenv())
33
+
34
+ pdf_reader = PdfReader('48lawsofpower.pdf')
35
+ # st.write(pdf_reader)
36
+
37
+ text = ""
38
+ for page in pdf_reader.pages:
39
+ text += page.extract_text()
40
+
41
+ text_splitter = CharacterTextSplitter(
42
+ separator = "\n",
43
+ chunk_size = 1000,
44
+ chunk_overlap = 200,
45
+ length_function = len,
46
+ )
47
+ ## Chunk Formation
48
+ chunks = text_splitter.split_text(text= text)
49
+
50
+ ## Embedding
51
+ embeddings = OpenAIEmbeddings()
52
+ document_search = FAISS.from_texts(chunks, embeddings)
53
+
54
+
55
+ query = st.text_input("Ask your questions: ")
56
+
57
+ docs = document_search.similarity_search(query=query)
58
+
59
+ llm = OpenAI()
60
+ chain = load_qa_chain(llm=llm, chain_type="stuff")
61
+ response = chain.run(input_documents=docs, question=query)
62
+ st.write(response)
63
+
64
+
65
+ if __name__ == '__main__':
66
+ main()
67
+
68
+
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ openai
3
+ PyPDF2
4
+ faiss-cpu
5
+ tiktoken
6
+ streamlit
7
+ python-dotenv
8
+ pickle
9
+ os