Spaces:
Runtime error
Runtime error
| import copy | |
| import torch | |
| from src.utils import init_weights_on_device | |
| def cast_to(weight, dtype, device): | |
| r = torch.empty_like(weight, dtype=dtype, device=device) | |
| r.copy_(weight) | |
| return r | |
| class AutoWrappedModule(torch.nn.Module): | |
| def __init__( | |
| self, | |
| module: torch.nn.Module, | |
| offload_dtype, | |
| offload_device, | |
| onload_dtype, | |
| onload_device, | |
| computation_dtype, | |
| computation_device, | |
| ): | |
| super().__init__() | |
| self.module = module.to(dtype=offload_dtype, device=offload_device) | |
| self.offload_dtype = offload_dtype | |
| self.offload_device = offload_device | |
| self.onload_dtype = onload_dtype | |
| self.onload_device = onload_device | |
| self.computation_dtype = computation_dtype | |
| self.computation_device = computation_device | |
| self.state = 0 | |
| def offload(self): | |
| if self.state == 1 and ( | |
| self.offload_dtype != self.onload_dtype | |
| or self.offload_device != self.onload_device | |
| ): | |
| self.module.to(dtype=self.offload_dtype, device=self.offload_device) | |
| self.state = 0 | |
| def onload(self): | |
| if self.state == 0 and ( | |
| self.offload_dtype != self.onload_dtype | |
| or self.offload_device != self.onload_device | |
| ): | |
| self.module.to(dtype=self.onload_dtype, device=self.onload_device) | |
| self.state = 1 | |
| def forward(self, *args, **kwargs): | |
| if ( | |
| self.onload_dtype == self.computation_dtype | |
| and self.onload_device == self.computation_device | |
| ): | |
| module = self.module | |
| else: | |
| module = copy.deepcopy(self.module).to( | |
| dtype=self.computation_dtype, device=self.computation_device | |
| ) | |
| return module(*args, **kwargs) | |
| class AutoWrappedLinear(torch.nn.Linear): | |
| def __init__( | |
| self, | |
| module: torch.nn.Linear, | |
| offload_dtype, | |
| offload_device, | |
| onload_dtype, | |
| onload_device, | |
| computation_dtype, | |
| computation_device, | |
| ): | |
| with init_weights_on_device(device=torch.device("meta")): | |
| super().__init__( | |
| in_features=module.in_features, | |
| out_features=module.out_features, | |
| bias=module.bias is not None, | |
| dtype=offload_dtype, | |
| device=offload_device, | |
| ) | |
| self.weight = module.weight | |
| self.bias = module.bias | |
| self.offload_dtype = offload_dtype | |
| self.offload_device = offload_device | |
| self.onload_dtype = onload_dtype | |
| self.onload_device = onload_device | |
| self.computation_dtype = computation_dtype | |
| self.computation_device = computation_device | |
| self.state = 0 | |
| def offload(self): | |
| if self.state == 1 and ( | |
| self.offload_dtype != self.onload_dtype | |
| or self.offload_device != self.onload_device | |
| ): | |
| self.to(dtype=self.offload_dtype, device=self.offload_device) | |
| self.state = 0 | |
| def onload(self): | |
| if self.state == 0 and ( | |
| self.offload_dtype != self.onload_dtype | |
| or self.offload_device != self.onload_device | |
| ): | |
| self.to(dtype=self.onload_dtype, device=self.onload_device) | |
| self.state = 1 | |
| def forward(self, x, *args, **kwargs): | |
| if ( | |
| self.onload_dtype == self.computation_dtype | |
| and self.onload_device == self.computation_device | |
| ): | |
| weight, bias = self.weight, self.bias | |
| else: | |
| weight = cast_to( | |
| self.weight, self.computation_dtype, self.computation_device | |
| ) | |
| bias = ( | |
| None | |
| if self.bias is None | |
| else cast_to(self.bias, self.computation_dtype, self.computation_device) | |
| ) | |
| return torch.nn.functional.linear(x, weight, bias) | |
| def enable_vram_management_recursively( | |
| model: torch.nn.Module, | |
| module_map: dict, | |
| module_config: dict, | |
| max_num_param=None, | |
| overflow_module_config: dict = None, | |
| total_num_param=0, | |
| ): | |
| for name, module in model.named_children(): | |
| for source_module, target_module in module_map.items(): | |
| if isinstance(module, source_module): | |
| num_param = sum(p.numel() for p in module.parameters()) | |
| # print(str(module) + ':' + str(num_param)) | |
| if ( | |
| max_num_param is not None | |
| and total_num_param + num_param > max_num_param | |
| ): | |
| # print(str(module) + '-->\t\t num:' + str(num_param) + "\t total:" + str(total_num_param)) | |
| module_config_ = overflow_module_config | |
| else: | |
| module_config_ = module_config | |
| module_ = target_module(module, **module_config_) | |
| setattr(model, name, module_) | |
| total_num_param += num_param | |
| break | |
| else: | |
| total_num_param = enable_vram_management_recursively( | |
| module, | |
| module_map, | |
| module_config, | |
| max_num_param, | |
| overflow_module_config, | |
| total_num_param, | |
| ) | |
| return total_num_param | |
| def enable_vram_management( | |
| model: torch.nn.Module, | |
| module_map: dict, | |
| module_config: dict, | |
| max_num_param=None, | |
| overflow_module_config: dict = None, | |
| ): | |
| enable_vram_management_recursively( | |
| model, | |
| module_map, | |
| module_config, | |
| max_num_param, | |
| overflow_module_config, | |
| total_num_param=0, | |
| ) | |
| model.vram_management_enabled = True | |