Spaces:
Sleeping
Sleeping
Commit
Β·
0fc7ca5
1
Parent(s):
5966700
some updates 2.0
Browse files- pipelines.py +21 -35
- requirements.txt +11 -20
pipelines.py
CHANGED
|
@@ -1,17 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
-
os.environ["HAYSTACK_TELEMETRY_ENABLED"] = "False"
|
| 3 |
import logging
|
| 4 |
from haystack.utils import Secret
|
| 5 |
from haystack.dataclasses import Document
|
| 6 |
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 7 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
|
| 8 |
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
| 9 |
-
|
| 10 |
-
# CORRECT IMPORT FOR HAYSTACK 2.1.0
|
| 11 |
-
from haystack.nodes.ranker import SentenceTransformersRanker
|
| 12 |
-
|
| 13 |
-
from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator
|
| 14 |
from haystack.components.preprocessors import DocumentSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Set up logging
|
| 17 |
logger = logging.getLogger(__name__)
|
|
@@ -29,12 +27,12 @@ text_embedder = SentenceTransformersTextEmbedder(
|
|
| 29 |
model="BAAI/bge-base-en-v1.5",
|
| 30 |
use_gpu=False
|
| 31 |
)
|
| 32 |
-
retriever = InMemoryEmbeddingRetriever(document_store=document_store, top_k=
|
| 33 |
|
| 34 |
-
#
|
| 35 |
reranker = SentenceTransformersRanker(
|
| 36 |
-
|
| 37 |
-
|
| 38 |
)
|
| 39 |
|
| 40 |
# Initialize generator
|
|
@@ -60,7 +58,8 @@ try:
|
|
| 60 |
logger.info("Warming up components...")
|
| 61 |
doc_embedder.warm_up()
|
| 62 |
text_embedder.warm_up()
|
| 63 |
-
|
|
|
|
| 64 |
logger.info("Components warmed up")
|
| 65 |
except Exception as e:
|
| 66 |
logger.error(f"Warmup failed: {e}")
|
|
@@ -76,22 +75,12 @@ def add_documents(texts: list[str], meta_list: list[dict]) -> int:
|
|
| 76 |
if not docs:
|
| 77 |
return 0
|
| 78 |
|
| 79 |
-
|
| 80 |
-
split_docs = split_result.get("documents", [])
|
| 81 |
|
| 82 |
if not split_docs:
|
| 83 |
return 0
|
| 84 |
|
| 85 |
-
embedded_docs = []
|
| 86 |
-
batch_size = 8
|
| 87 |
-
|
| 88 |
-
for i in range(0, len(split_docs), batch_size):
|
| 89 |
-
batch = split_docs[i:i+batch_size]
|
| 90 |
-
try:
|
| 91 |
-
embedded_batch = doc_embedder.run(batch).get("documents", [])
|
| 92 |
-
embedded_docs.extend(embedded_batch)
|
| 93 |
-
except Exception as e:
|
| 94 |
-
logger.error(f"Embedding failed: {e}")
|
| 95 |
|
| 96 |
if embedded_docs:
|
| 97 |
document_store.write_documents(embedded_docs)
|
|
@@ -103,7 +92,7 @@ def query_rag(question: str, session_id: str) -> dict:
|
|
| 103 |
if not question.strip():
|
| 104 |
return {"answer": "Please provide a non-empty question.", "sources": []}
|
| 105 |
|
| 106 |
-
embedding_result = text_embedder.run(question)
|
| 107 |
query_emb = embedding_result.get("embedding")
|
| 108 |
|
| 109 |
if not query_emb:
|
|
@@ -115,23 +104,20 @@ def query_rag(question: str, session_id: str) -> dict:
|
|
| 115 |
if not retrieved_docs:
|
| 116 |
return {"answer": "No documents found. Upload a file first.", "sources": []}
|
| 117 |
|
| 118 |
-
#
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
documents=retrieved_docs[:5],
|
| 122 |
-
top_k=3
|
| 123 |
-
)
|
| 124 |
|
| 125 |
context = "\n\n".join([doc.content for doc in reranked_docs])
|
| 126 |
-
prompt = f"
|
| 127 |
|
| 128 |
-
response = generator.run(
|
| 129 |
-
answer = response
|
| 130 |
|
| 131 |
sources = [
|
| 132 |
{
|
| 133 |
-
"filename": d.meta.get("
|
| 134 |
-
"page": d.meta.get("
|
| 135 |
"snippet": d.content[:200] + "..." if len(d.content) > 200 else d.content
|
| 136 |
}
|
| 137 |
for d in reranked_docs
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import logging
|
| 3 |
from haystack.utils import Secret
|
| 4 |
from haystack.dataclasses import Document
|
| 5 |
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 6 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
|
| 7 |
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from haystack.components.preprocessors import DocumentSplitter
|
| 9 |
+
from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator
|
| 10 |
+
|
| 11 |
+
# β
CORRECTED IMPORT FOR HAYSTACK 2.x
|
| 12 |
+
from haystack.components.rankers import SentenceTransformersRanker
|
| 13 |
|
| 14 |
# Set up logging
|
| 15 |
logger = logging.getLogger(__name__)
|
|
|
|
| 27 |
model="BAAI/bge-base-en-v1.5",
|
| 28 |
use_gpu=False
|
| 29 |
)
|
| 30 |
+
retriever = InMemoryEmbeddingRetriever(document_store=document_store, top_k=5) # Retrieve more to give reranker more options
|
| 31 |
|
| 32 |
+
# β
CORRECTED INITIALIZATION FOR HAYSTACK 2.x RERANKER
|
| 33 |
reranker = SentenceTransformersRanker(
|
| 34 |
+
model="cross-encoder/ms-marco-TinyBERT-L-2-v2",
|
| 35 |
+
top_k=3 # Set top_k during initialization or run
|
| 36 |
)
|
| 37 |
|
| 38 |
# Initialize generator
|
|
|
|
| 58 |
logger.info("Warming up components...")
|
| 59 |
doc_embedder.warm_up()
|
| 60 |
text_embedder.warm_up()
|
| 61 |
+
# β
CORRECTED WARMUP FOR HAYSTACK 2.x
|
| 62 |
+
reranker.warm_up()
|
| 63 |
logger.info("Components warmed up")
|
| 64 |
except Exception as e:
|
| 65 |
logger.error(f"Warmup failed: {e}")
|
|
|
|
| 75 |
if not docs:
|
| 76 |
return 0
|
| 77 |
|
| 78 |
+
split_docs = splitter.run(documents=docs).get("documents", [])
|
|
|
|
| 79 |
|
| 80 |
if not split_docs:
|
| 81 |
return 0
|
| 82 |
|
| 83 |
+
embedded_docs = doc_embedder.run(documents=split_docs).get("documents", [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
if embedded_docs:
|
| 86 |
document_store.write_documents(embedded_docs)
|
|
|
|
| 92 |
if not question.strip():
|
| 93 |
return {"answer": "Please provide a non-empty question.", "sources": []}
|
| 94 |
|
| 95 |
+
embedding_result = text_embedder.run(text=question)
|
| 96 |
query_emb = embedding_result.get("embedding")
|
| 97 |
|
| 98 |
if not query_emb:
|
|
|
|
| 104 |
if not retrieved_docs:
|
| 105 |
return {"answer": "No documents found. Upload a file first.", "sources": []}
|
| 106 |
|
| 107 |
+
# β
CORRECTED USAGE FOR HAYSTACK 2.x RERANKER
|
| 108 |
+
rerank_result = reranker.run(query=question, documents=retrieved_docs)
|
| 109 |
+
reranked_docs = rerank_result.get("documents", [])
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
context = "\n\n".join([doc.content for doc in reranked_docs])
|
| 112 |
+
prompt = f"Given the following context, please answer the question.\n\nContext:\n{context}\n\nQuestion: {question}"
|
| 113 |
|
| 114 |
+
response = generator.run(prompt=prompt)
|
| 115 |
+
answer = response["replies"][0] if response.get("replies") else "Sorry, I couldn't generate an answer."
|
| 116 |
|
| 117 |
sources = [
|
| 118 |
{
|
| 119 |
+
"filename": d.meta.get("file_name", "Unknown"), # Standardized meta key
|
| 120 |
+
"page": d.meta.get("page_number", "N/A"),
|
| 121 |
"snippet": d.content[:200] + "..." if len(d.content) > 200 else d.content
|
| 122 |
}
|
| 123 |
for d in reranked_docs
|
requirements.txt
CHANGED
|
@@ -1,22 +1,13 @@
|
|
| 1 |
# Core dependencies
|
| 2 |
-
fastapi
|
| 3 |
-
uvicorn
|
| 4 |
-
python-multipart
|
| 5 |
-
pillow
|
| 6 |
-
pdfplumber
|
| 7 |
-
pytesseract
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Google AI and Haystack
|
| 14 |
-
google-generativeai==0.7.2
|
| 15 |
-
haystack-ai==2.1.0
|
| 16 |
-
psutil==5.9.8
|
| 17 |
-
|
| 18 |
-
# Compatible dependencies
|
| 19 |
-
protobuf==4.25.3
|
| 20 |
-
grpcio==1.64.0
|
| 21 |
-
python-dotenv==1.0.1
|
| 22 |
-
rpds-py==0.18.0
|
|
|
|
| 1 |
# Core dependencies
|
| 2 |
+
fastapi
|
| 3 |
+
uvicorn
|
| 4 |
+
python-multipart
|
| 5 |
+
pillow
|
| 6 |
+
pdfplumber
|
| 7 |
+
pytesseract
|
| 8 |
+
python-dotenv
|
| 9 |
|
| 10 |
+
# Haystack and Integrations
|
| 11 |
+
haystack-ai
|
| 12 |
+
google-ai-haystack
|
| 13 |
+
sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|