Spaces:
Sleeping
Sleeping
Commit
·
5966700
1
Parent(s):
ef8bcc2
Fix Haystack 2.1.0 compatibility
Browse files- pipelines.py +22 -79
pipelines.py
CHANGED
|
@@ -7,17 +7,8 @@ from haystack.document_stores.in_memory import InMemoryDocumentStore
|
|
| 7 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
|
| 8 |
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
# Try the new import structure (Haystack >= 2.1.1)
|
| 13 |
-
from haystack.components.rankers.sentence_transformers import SentenceTransformersSimilarityRanker
|
| 14 |
-
except ImportError:
|
| 15 |
-
try:
|
| 16 |
-
# Try the direct import (Haystack 2.1.0)
|
| 17 |
-
from haystack.components.rankers import SentenceTransformersSimilarityRanker
|
| 18 |
-
except ImportError:
|
| 19 |
-
# Fallback to legacy import
|
| 20 |
-
from haystack.nodes.ranker import SentenceTransformersRanker as SentenceTransformersSimilarityRanker
|
| 21 |
|
| 22 |
from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator
|
| 23 |
from haystack.components.preprocessors import DocumentSplitter
|
|
@@ -32,29 +23,19 @@ document_store = InMemoryDocumentStore()
|
|
| 32 |
# Optimized for CPU
|
| 33 |
doc_embedder = SentenceTransformersDocumentEmbedder(
|
| 34 |
model="BAAI/bge-base-en-v1.5",
|
| 35 |
-
use_gpu=False
|
| 36 |
-
onnx_execution_provider="CPUExecutionProvider"
|
| 37 |
)
|
| 38 |
text_embedder = SentenceTransformersTextEmbedder(
|
| 39 |
model="BAAI/bge-base-en-v1.5",
|
| 40 |
-
use_gpu=False
|
| 41 |
-
onnx_execution_provider="CPUExecutionProvider"
|
| 42 |
)
|
| 43 |
retriever = InMemoryEmbeddingRetriever(document_store=document_store, top_k=3)
|
| 44 |
|
| 45 |
-
# Initialize ranker
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
use_gpu=False
|
| 51 |
-
)
|
| 52 |
-
else:
|
| 53 |
-
# Using the new ranker
|
| 54 |
-
reranker = SentenceTransformersSimilarityRanker(
|
| 55 |
-
model="cross-encoder/ms-marco-TinyBERT-L-2-v2",
|
| 56 |
-
use_gpu=False
|
| 57 |
-
)
|
| 58 |
|
| 59 |
# Initialize generator
|
| 60 |
generator = GoogleAIGeminiGenerator(
|
|
@@ -79,20 +60,13 @@ try:
|
|
| 79 |
logger.info("Warming up components...")
|
| 80 |
doc_embedder.warm_up()
|
| 81 |
text_embedder.warm_up()
|
| 82 |
-
|
| 83 |
-
# Handle different warm_up methods
|
| 84 |
-
if hasattr(reranker, 'warm_up'):
|
| 85 |
-
reranker.warm_up()
|
| 86 |
-
elif hasattr(reranker, 'prepared'):
|
| 87 |
-
reranker.prepared = True # Legacy versions didn't require warm_up
|
| 88 |
-
|
| 89 |
logger.info("Components warmed up")
|
| 90 |
except Exception as e:
|
| 91 |
logger.error(f"Warmup failed: {e}")
|
| 92 |
|
| 93 |
def add_documents(texts: list[str], meta_list: list[dict]) -> int:
|
| 94 |
"""Process and store documents with chunking"""
|
| 95 |
-
# Create base documents
|
| 96 |
docs = [
|
| 97 |
Document(content=text, meta=meta)
|
| 98 |
for text, meta in zip(texts, meta_list)
|
|
@@ -102,14 +76,12 @@ def add_documents(texts: list[str], meta_list: list[dict]) -> int:
|
|
| 102 |
if not docs:
|
| 103 |
return 0
|
| 104 |
|
| 105 |
-
# Split into chunks
|
| 106 |
split_result = splitter.run(docs)
|
| 107 |
split_docs = split_result.get("documents", [])
|
| 108 |
|
| 109 |
if not split_docs:
|
| 110 |
return 0
|
| 111 |
|
| 112 |
-
# Batch embedding with reduced batch size
|
| 113 |
embedded_docs = []
|
| 114 |
batch_size = 8
|
| 115 |
|
|
@@ -128,60 +100,34 @@ def add_documents(texts: list[str], meta_list: list[dict]) -> int:
|
|
| 128 |
def query_rag(question: str, session_id: str) -> dict:
|
| 129 |
"""Query the RAG system with session filtering"""
|
| 130 |
try:
|
| 131 |
-
# Validate input
|
| 132 |
if not question.strip():
|
| 133 |
-
return {
|
| 134 |
-
"answer": "Please provide a non-empty question.",
|
| 135 |
-
"sources": []
|
| 136 |
-
}
|
| 137 |
|
| 138 |
-
# Embed question
|
| 139 |
embedding_result = text_embedder.run(question)
|
| 140 |
query_emb = embedding_result.get("embedding")
|
| 141 |
|
| 142 |
if not query_emb:
|
| 143 |
-
return {
|
| 144 |
-
"answer": "Failed to process your question.",
|
| 145 |
-
"sources": []
|
| 146 |
-
}
|
| 147 |
|
| 148 |
-
# Retrieve documents with session filter
|
| 149 |
filters = {"field": "meta.session_id", "operator": "==", "value": session_id}
|
| 150 |
-
retrieved_docs = retriever.run(
|
| 151 |
-
query_embedding=query_emb,
|
| 152 |
-
filters=filters
|
| 153 |
-
).get("documents", [])
|
| 154 |
|
| 155 |
if not retrieved_docs:
|
| 156 |
-
return {
|
| 157 |
-
"answer": "No documents found for this session. Please upload a file first.",
|
| 158 |
-
"sources": []
|
| 159 |
-
}
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
).get("documents", [])[:3]
|
| 168 |
-
else:
|
| 169 |
-
# Legacy interface
|
| 170 |
-
reranked_docs = reranker.predict(
|
| 171 |
-
query=question,
|
| 172 |
-
documents=retrieved_docs[:5],
|
| 173 |
-
top_k=3
|
| 174 |
-
)
|
| 175 |
|
| 176 |
-
# Generate answer with context
|
| 177 |
context = "\n\n".join([doc.content for doc in reranked_docs])
|
| 178 |
prompt = f"Context:\n{context}\n\nQuestion: {question}\nAnswer:"
|
| 179 |
|
| 180 |
-
# Handle generator response
|
| 181 |
response = generator.run(parts=[prompt])
|
| 182 |
-
answer = response.get("replies", [""])[0] if response and response.get("replies") else "No response
|
| 183 |
|
| 184 |
-
# Format sources
|
| 185 |
sources = [
|
| 186 |
{
|
| 187 |
"filename": d.meta.get("filename", "Unknown"),
|
|
@@ -195,7 +141,4 @@ def query_rag(question: str, session_id: str) -> dict:
|
|
| 195 |
|
| 196 |
except Exception as e:
|
| 197 |
logger.exception(f"Query failed: {e}")
|
| 198 |
-
return {
|
| 199 |
-
"answer": "Sorry, I encountered an error processing your request.",
|
| 200 |
-
"sources": []
|
| 201 |
-
}
|
|
|
|
| 7 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
|
| 8 |
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
| 9 |
|
| 10 |
+
# CORRECT IMPORT FOR HAYSTACK 2.1.0
|
| 11 |
+
from haystack.nodes.ranker import SentenceTransformersRanker
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
from haystack_integrations.components.generators.google_ai import GoogleAIGeminiGenerator
|
| 14 |
from haystack.components.preprocessors import DocumentSplitter
|
|
|
|
| 23 |
# Optimized for CPU
|
| 24 |
doc_embedder = SentenceTransformersDocumentEmbedder(
|
| 25 |
model="BAAI/bge-base-en-v1.5",
|
| 26 |
+
use_gpu=False
|
|
|
|
| 27 |
)
|
| 28 |
text_embedder = SentenceTransformersTextEmbedder(
|
| 29 |
model="BAAI/bge-base-en-v1.5",
|
| 30 |
+
use_gpu=False
|
|
|
|
| 31 |
)
|
| 32 |
retriever = InMemoryEmbeddingRetriever(document_store=document_store, top_k=3)
|
| 33 |
|
| 34 |
+
# Initialize ranker - DIFFERENT INITIALIZATION FOR 2.1.0
|
| 35 |
+
reranker = SentenceTransformersRanker(
|
| 36 |
+
model_name_or_path="cross-encoder/ms-marco-TinyBERT-L-2-v2",
|
| 37 |
+
use_gpu=False
|
| 38 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Initialize generator
|
| 41 |
generator = GoogleAIGeminiGenerator(
|
|
|
|
| 60 |
logger.info("Warming up components...")
|
| 61 |
doc_embedder.warm_up()
|
| 62 |
text_embedder.warm_up()
|
| 63 |
+
reranker.prepared = True # Different warmup for 2.1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
logger.info("Components warmed up")
|
| 65 |
except Exception as e:
|
| 66 |
logger.error(f"Warmup failed: {e}")
|
| 67 |
|
| 68 |
def add_documents(texts: list[str], meta_list: list[dict]) -> int:
|
| 69 |
"""Process and store documents with chunking"""
|
|
|
|
| 70 |
docs = [
|
| 71 |
Document(content=text, meta=meta)
|
| 72 |
for text, meta in zip(texts, meta_list)
|
|
|
|
| 76 |
if not docs:
|
| 77 |
return 0
|
| 78 |
|
|
|
|
| 79 |
split_result = splitter.run(docs)
|
| 80 |
split_docs = split_result.get("documents", [])
|
| 81 |
|
| 82 |
if not split_docs:
|
| 83 |
return 0
|
| 84 |
|
|
|
|
| 85 |
embedded_docs = []
|
| 86 |
batch_size = 8
|
| 87 |
|
|
|
|
| 100 |
def query_rag(question: str, session_id: str) -> dict:
|
| 101 |
"""Query the RAG system with session filtering"""
|
| 102 |
try:
|
|
|
|
| 103 |
if not question.strip():
|
| 104 |
+
return {"answer": "Please provide a non-empty question.", "sources": []}
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
embedding_result = text_embedder.run(question)
|
| 107 |
query_emb = embedding_result.get("embedding")
|
| 108 |
|
| 109 |
if not query_emb:
|
| 110 |
+
return {"answer": "Failed to process your question.", "sources": []}
|
|
|
|
|
|
|
|
|
|
| 111 |
|
|
|
|
| 112 |
filters = {"field": "meta.session_id", "operator": "==", "value": session_id}
|
| 113 |
+
retrieved_docs = retriever.run(query_embedding=query_emb, filters=filters).get("documents", [])
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
if not retrieved_docs:
|
| 116 |
+
return {"answer": "No documents found. Upload a file first.", "sources": []}
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
# DIFFERENT USAGE FOR 2.1.0 RANKER
|
| 119 |
+
reranked_docs = reranker.predict(
|
| 120 |
+
query=question,
|
| 121 |
+
documents=retrieved_docs[:5],
|
| 122 |
+
top_k=3
|
| 123 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
|
|
|
| 125 |
context = "\n\n".join([doc.content for doc in reranked_docs])
|
| 126 |
prompt = f"Context:\n{context}\n\nQuestion: {question}\nAnswer:"
|
| 127 |
|
|
|
|
| 128 |
response = generator.run(parts=[prompt])
|
| 129 |
+
answer = response.get("replies", [""])[0] if response and response.get("replies") else "No response"
|
| 130 |
|
|
|
|
| 131 |
sources = [
|
| 132 |
{
|
| 133 |
"filename": d.meta.get("filename", "Unknown"),
|
|
|
|
| 141 |
|
| 142 |
except Exception as e:
|
| 143 |
logger.exception(f"Query failed: {e}")
|
| 144 |
+
return {"answer": "Sorry, I encountered an error.", "sources": []}
|
|
|
|
|
|
|
|
|