|
from ultralytics import YOLO |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
class detectPipeline(): |
|
def __init__(self) -> None: |
|
self.model = YOLO('yolo_v8_nano_model.pt') |
|
self.class_names = {i: chr(65 + i) for i in range(26)} |
|
|
|
|
|
def detect_signs(self, img_path: str): |
|
|
|
img = Image.open(img_path).convert('RGB') |
|
img_array = np.array(img) |
|
|
|
|
|
detections = self.model(img_array)[0] |
|
sign_detections = [] |
|
for sign in detections.boxes.data.tolist(): |
|
x1, y1, x2, y2, score, class_id = sign |
|
sign_detections.append([int(x1), int(y1), int(x2), int(y2), score, int(class_id)]) |
|
return sign_detections |
|
|
|
def drawDetections2Image(self, img_path, detections): |
|
img = Image.open(img_path).convert('RGB') |
|
img = np.array(img) |
|
for bbox in detections: |
|
x1, y1, x2, y2, score, class_id = bbox |
|
cv.rectangle(img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 255, 0), thickness=25) |
|
cv.putText(img, text=f'{self.class_names[class_id]} ({round(score*100, 2)}%)', org=(x1, y1-20), fontFace=cv.FONT_HERSHEY_SIMPLEX, fontScale=3.5, |
|
color=(0, 0, 255), lineType=cv.LINE_AA, thickness=10) |
|
img_detections = np.array(img) |
|
return img_detections |
|
|