Project Files committed
Browse files- PROJECT_README.md +18 -0
- Sign-language-detection-results-20240115T023838Z-001.zip +3 -0
- Sign_Language_Detection_YOLOv8.ipynb +0 -0
- app.py +33 -0
- pipeline.py +35 -0
- requirements.txt +4 -0
- yolo_v8_nano_model.pt +3 -0
PROJECT_README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Sign Language Letters detection
|
2 |
+
|
3 |
+
Detects the different letters represented by actions of hand in sign language
|
4 |
+
|
5 |
+
|
6 |
+
🚀Trained on **YOLOv8 Nano** model achieving **mAP:50 - 0.94** & **mAP:50-95 - 0.89**
|
7 |
+
|
8 |
+
🤗 Hugging Face APP Link: https://huggingface.co/spaces/Harsh72AI/Sign-Language-Letters-detection/
|
9 |
+
|
10 |
+
* 🦹♂️ Dataset used: https://universe.roboflow.com/david-lee-d0rhs/american-sign-language-letters/
|
11 |
+
|
12 |
+
**Requirements for projects**
|
13 |
+
```
|
14 |
+
ultralytics
|
15 |
+
torch
|
16 |
+
numpy
|
17 |
+
streamlit
|
18 |
+
```
|
Sign-language-detection-results-20240115T023838Z-001.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a28ad8479a18cb4b03c88b3ce9b0ad4deb7539968dfb0b6ca01ffe577db45952
|
3 |
+
size 19253170
|
Sign_Language_Detection_YOLOv8.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pipeline import detectPipeline
|
3 |
+
|
4 |
+
|
5 |
+
st.title('Sign Language Letters detection')
|
6 |
+
st.write('Detects Sign language Alphabets in an image \nPowered by YOLOv8 Nano model')
|
7 |
+
|
8 |
+
st.write('')
|
9 |
+
|
10 |
+
detect_pipeline = detectPipeline()
|
11 |
+
|
12 |
+
st.info('Sign Language Letters detection model loaded successfully!')
|
13 |
+
|
14 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
15 |
+
|
16 |
+
if uploaded_file is not None:
|
17 |
+
|
18 |
+
with st.container():
|
19 |
+
col1, col2 = st.columns([3, 3])
|
20 |
+
|
21 |
+
col1.header('Input Image')
|
22 |
+
col1.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
23 |
+
|
24 |
+
col1.text('')
|
25 |
+
col1.text('')
|
26 |
+
|
27 |
+
if st.button('Detect'):
|
28 |
+
detections = detect_pipeline.detect_signs(img_path=uploaded_file)
|
29 |
+
detections_img = detect_pipeline.drawDetections2Image(img_path=uploaded_file, detections=detections)
|
30 |
+
|
31 |
+
col2.header('Detections')
|
32 |
+
col2.image(detections_img, caption='Predictions by model', use_column_width=True)
|
33 |
+
|
pipeline.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
|
7 |
+
class detectPipeline():
|
8 |
+
def __init__(self) -> None:
|
9 |
+
self.model = YOLO('yolo_v8_nano_model.pt')
|
10 |
+
self.class_names = {i: chr(65 + i) for i in range(26)}
|
11 |
+
|
12 |
+
|
13 |
+
def detect_signs(self, img_path: str):
|
14 |
+
# Data Preprocessing
|
15 |
+
img = Image.open(img_path).convert('RGB')
|
16 |
+
img_array = np.array(img)
|
17 |
+
|
18 |
+
# Making detections using YOLOv8 Nano
|
19 |
+
detections = self.model(img_array)[0]
|
20 |
+
sign_detections = []
|
21 |
+
for sign in detections.boxes.data.tolist():
|
22 |
+
x1, y1, x2, y2, score, class_id = sign
|
23 |
+
sign_detections.append([int(x1), int(y1), int(x2), int(y2), score, int(class_id)])
|
24 |
+
return sign_detections
|
25 |
+
|
26 |
+
def drawDetections2Image(self, img_path, detections):
|
27 |
+
img = Image.open(img_path).convert('RGB')
|
28 |
+
img = np.array(img)
|
29 |
+
for bbox in detections:
|
30 |
+
x1, y1, x2, y2, score, class_id = bbox
|
31 |
+
cv.rectangle(img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 255, 0), thickness=25)
|
32 |
+
cv.putText(img, text=f'{self.class_names[class_id]} ({round(score*100, 2)}%)', org=(x1, y1-20), fontFace=cv.FONT_HERSHEY_SIMPLEX, fontScale=3.5,
|
33 |
+
color=(0, 0, 255), lineType=cv.LINE_AA, thickness=10)
|
34 |
+
img_detections = np.array(img)
|
35 |
+
return img_detections
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
streamlit
|
yolo_v8_nano_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59653c5ebdc82c93372189910d73e64701a83e817ce496aa130121dc2af6a66a
|
3 |
+
size 6246041
|