|
import streamlit as st |
|
from pipeline import detectPipeline |
|
|
|
|
|
st.title('Sign Language Letters detection') |
|
st.write('Detects Sign language Alphabets in an image \nPowered by YOLOv8 Nano model') |
|
|
|
st.write('') |
|
|
|
detect_pipeline = detectPipeline() |
|
|
|
st.info('Sign Language Letters detection model loaded successfully!') |
|
|
|
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
with st.container(): |
|
col1, col2 = st.columns([3, 3]) |
|
|
|
col1.header('Input Image') |
|
col1.image(uploaded_file, caption='Uploaded Image', use_column_width=True) |
|
|
|
col1.text('') |
|
col1.text('') |
|
|
|
if st.button('Detect'): |
|
detections = detect_pipeline.detect_signs(img_path=uploaded_file) |
|
detections_img = detect_pipeline.drawDetections2Image(img_path=uploaded_file, detections=detections) |
|
|
|
col2.header('Detections') |
|
col2.image(detections_img, caption='Predictions by model', use_column_width=True) |
|
|
|
|