Spaces:
Runtime error
Runtime error
| # Finetuning RoBERTa on a custom classification task | |
| This example shows how to finetune RoBERTa on the IMDB dataset, but should illustrate the process for most classification tasks. | |
| ### 1) Get the data | |
| ```bash | |
| wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz | |
| tar zxvf aclImdb_v1.tar.gz | |
| ``` | |
| ### 2) Format data | |
| `IMDB` data has one data-sample in each file, below python code-snippet converts it one file for train and valid each for ease of processing. | |
| ```python | |
| import argparse | |
| import os | |
| import random | |
| from glob import glob | |
| random.seed(0) | |
| def main(args): | |
| for split in ['train', 'test']: | |
| samples = [] | |
| for class_label in ['pos', 'neg']: | |
| fnames = glob(os.path.join(args.datadir, split, class_label) + '/*.txt') | |
| for fname in fnames: | |
| with open(fname) as fin: | |
| line = fin.readline() | |
| samples.append((line, 1 if class_label == 'pos' else 0)) | |
| random.shuffle(samples) | |
| out_fname = 'train' if split == 'train' else 'dev' | |
| f1 = open(os.path.join(args.datadir, out_fname + '.input0'), 'w') | |
| f2 = open(os.path.join(args.datadir, out_fname + '.label'), 'w') | |
| for sample in samples: | |
| f1.write(sample[0] + '\n') | |
| f2.write(str(sample[1]) + '\n') | |
| f1.close() | |
| f2.close() | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--datadir', default='aclImdb') | |
| args = parser.parse_args() | |
| main(args) | |
| ``` | |
| ### 3) BPE encode | |
| Run `multiprocessing_bpe_encoder`, you can also do this in previous step for each sample but that might be slower. | |
| ```bash | |
| # Download encoder.json and vocab.bpe | |
| wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json' | |
| wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe' | |
| for SPLIT in train dev; do | |
| python -m examples.roberta.multiprocessing_bpe_encoder \ | |
| --encoder-json encoder.json \ | |
| --vocab-bpe vocab.bpe \ | |
| --inputs "aclImdb/$SPLIT.input0" \ | |
| --outputs "aclImdb/$SPLIT.input0.bpe" \ | |
| --workers 60 \ | |
| --keep-empty | |
| done | |
| ``` | |
| ### 4) Preprocess data | |
| ```bash | |
| # Download fairseq dictionary. | |
| wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt' | |
| fairseq-preprocess \ | |
| --only-source \ | |
| --trainpref "aclImdb/train.input0.bpe" \ | |
| --validpref "aclImdb/dev.input0.bpe" \ | |
| --destdir "IMDB-bin/input0" \ | |
| --workers 60 \ | |
| --srcdict dict.txt | |
| fairseq-preprocess \ | |
| --only-source \ | |
| --trainpref "aclImdb/train.label" \ | |
| --validpref "aclImdb/dev.label" \ | |
| --destdir "IMDB-bin/label" \ | |
| --workers 60 | |
| ``` | |
| ### 5) Run training | |
| ```bash | |
| TOTAL_NUM_UPDATES=7812 # 10 epochs through IMDB for bsz 32 | |
| WARMUP_UPDATES=469 # 6 percent of the number of updates | |
| LR=1e-05 # Peak LR for polynomial LR scheduler. | |
| HEAD_NAME=imdb_head # Custom name for the classification head. | |
| NUM_CLASSES=2 # Number of classes for the classification task. | |
| MAX_SENTENCES=8 # Batch size. | |
| ROBERTA_PATH=/path/to/roberta.large/model.pt | |
| CUDA_VISIBLE_DEVICES=0 fairseq-train IMDB-bin/ \ | |
| --restore-file $ROBERTA_PATH \ | |
| --max-positions 512 \ | |
| --batch-size $MAX_SENTENCES \ | |
| --max-tokens 4400 \ | |
| --task sentence_prediction \ | |
| --reset-optimizer --reset-dataloader --reset-meters \ | |
| --required-batch-size-multiple 1 \ | |
| --init-token 0 --separator-token 2 \ | |
| --arch roberta_large \ | |
| --criterion sentence_prediction \ | |
| --classification-head-name $HEAD_NAME \ | |
| --num-classes $NUM_CLASSES \ | |
| --dropout 0.1 --attention-dropout 0.1 \ | |
| --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ | |
| --clip-norm 0.0 \ | |
| --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ | |
| --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ | |
| --max-epoch 10 \ | |
| --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ | |
| --shorten-method "truncate" \ | |
| --find-unused-parameters \ | |
| --update-freq 4 | |
| ``` | |
| The above command will finetune RoBERTa-large with an effective batch-size of 32 | |
| sentences (`--batch-size=8 --update-freq=4`). The expected | |
| `best-validation-accuracy` after 10 epochs is ~96.5%. | |
| If you run out of GPU memory, try decreasing `--batch-size` and increase | |
| `--update-freq` to compensate. | |
| ### 6) Load model using hub interface | |
| Now we can load the trained model checkpoint using the RoBERTa hub interface. | |
| Assuming your checkpoints are stored in `checkpoints/`: | |
| ```python | |
| from fairseq.models.roberta import RobertaModel | |
| roberta = RobertaModel.from_pretrained( | |
| 'checkpoints', | |
| checkpoint_file='checkpoint_best.pt', | |
| data_name_or_path='IMDB-bin' | |
| ) | |
| roberta.eval() # disable dropout | |
| ``` | |
| Finally you can make predictions using the `imdb_head` (or whatever you set | |
| `--classification-head-name` to during training): | |
| ```python | |
| label_fn = lambda label: roberta.task.label_dictionary.string( | |
| [label + roberta.task.label_dictionary.nspecial] | |
| ) | |
| tokens = roberta.encode('Best movie this year') | |
| pred = label_fn(roberta.predict('imdb_head', tokens).argmax().item()) | |
| assert pred == '1' # positive | |
| tokens = roberta.encode('Worst movie ever') | |
| pred = label_fn(roberta.predict('imdb_head', tokens).argmax().item()) | |
| assert pred == '0' # negative | |
| ``` | |