|
import gradio as gr |
|
from PIL import Image, ImageDraw |
|
import torch |
|
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTModel, OwlViTImageProcessor |
|
from transformers.image_transforms import center_to_corners_format |
|
from transformers.models.owlvit.modeling_owlvit import box_iou |
|
from functools import partial |
|
import numpy as np |
|
|
|
|
|
|
|
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") |
|
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32") |
|
|
|
from transformers.models.owlvit.modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTClassPredictionHead |
|
|
|
|
|
|
|
|
|
|
|
def classpredictionhead_box_forward( |
|
self, |
|
image_embeds, |
|
query_indice, |
|
query_mask, |
|
): |
|
image_class_embeds = self.dense0(image_embeds) |
|
|
|
|
|
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6) |
|
query_embeds = image_class_embeds[0, query_indice].unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
|
|
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds) |
|
|
|
|
|
logit_shift = self.logit_shift(image_embeds) |
|
logit_scale = self.logit_scale(image_embeds) |
|
logit_scale = self.elu(logit_scale) + 1 |
|
pred_logits = (pred_logits + logit_shift) * logit_scale |
|
|
|
if query_mask is not None: |
|
if query_mask.ndim > 1: |
|
query_mask = torch.unsqueeze(query_mask, dim=-2) |
|
|
|
pred_logits = pred_logits.to(torch.float64) |
|
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits) |
|
pred_logits = pred_logits.to(torch.float32) |
|
|
|
return (pred_logits, image_class_embeds) |
|
|
|
|
|
|
|
def class_predictor( |
|
self, |
|
image_feats, |
|
query_indice=None, |
|
query_mask=None, |
|
): |
|
|
|
(pred_logits, image_class_embeds) = self.class_head.classpredictionhead_box_forward(image_feats, query_indice, query_mask) |
|
|
|
return (pred_logits, image_class_embeds) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_max_iou_indice(target_pred_boxes, query_box, target_sizes): |
|
boxes = center_to_corners_format(target_pred_boxes) |
|
img_h, img_w = target_sizes.unbind(1) |
|
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) |
|
boxes = boxes * scale_fct[:, None, :] |
|
|
|
iou, _ = box_iou(boxes.squeeze(0), query_box) |
|
|
|
return iou.argmax() |
|
|
|
|
|
def box_guided_detection( |
|
self: OwlViTForObjectDetection, |
|
pixel_values, |
|
query_box=None, |
|
target_sizes=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
|
|
|
|
|
|
feature_map, vision_outputs = self.image_embedder( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape |
|
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
target_pred_boxes = self.box_predictor(image_feats, feature_map) |
|
|
|
|
|
query_indice = get_max_iou_indice(target_pred_boxes, query_box, target_sizes) |
|
|
|
|
|
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_indice=query_indice) |
|
|
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
output = ( |
|
feature_map, |
|
|
|
target_pred_boxes, |
|
|
|
pred_logits, |
|
class_embeds, |
|
vision_outputs.to_tuple(), |
|
) |
|
output = tuple(x for x in output if x is not None) |
|
return output |
|
|
|
return OwlViTImageGuidedObjectDetectionOutput( |
|
image_embeds=feature_map, |
|
|
|
target_pred_boxes=target_pred_boxes, |
|
|
|
logits=pred_logits, |
|
class_embeds=class_embeds, |
|
text_model_output=None, |
|
vision_model_output=vision_outputs, |
|
) |
|
|
|
|
|
model.box_guided_detection = partial(box_guided_detection, model) |
|
model.class_predictor = partial(class_predictor, model) |
|
model.class_head.classpredictionhead_box_forward = partial(classpredictionhead_box_forward, model.class_head) |
|
|
|
|
|
outputs = None |
|
def prepare_embedds(xmin, ymin, xmax, ymax, image): |
|
box = (int(xmin), int(ymin), int(xmax), int(ymax)) |
|
return (image, [(box, "manul")]) |
|
|
|
def manul_box_change(xmin, ymin, xmax, ymax, image): |
|
box = (int(xmin), int(ymin), int(xmax), int(ymax)) |
|
return (image["image"], [(box, "manul")]) |
|
|
|
def threshold_change(xmin, ymin, xmax, ymax, image, threshold, nms): |
|
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax)) |
|
|
|
global outputs |
|
target_sizes = torch.Tensor([image["image"].size[::-1]]) |
|
|
|
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes) |
|
|
|
boxes = results[0]['boxes'].type(torch.int64).tolist() |
|
scores = results[0]['scores'].tolist() |
|
labels = list(zip(boxes, scores)) |
|
|
|
cnt = len(boxes) |
|
|
|
return (image["image"], labels), cnt |
|
|
|
def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms): |
|
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax)) |
|
|
|
global outputs |
|
target_sizes = torch.Tensor([image["image"].size[::-1]]) |
|
inputs = processor(images=image["image"].convert("RGB"), return_tensors="pt") |
|
outputs = model.box_guided_detection(**inputs, query_box=torch.Tensor([manul_box]), target_sizes=target_sizes) |
|
|
|
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes) |
|
|
|
boxes = results[0]['boxes'].type(torch.int64).tolist() |
|
scores = results[0]['scores'].tolist() |
|
labels = list(zip(boxes, scores)) |
|
|
|
cnt = len(boxes) |
|
|
|
return (image["image"], labels), cnt |
|
|
|
def save_embedding(exam): |
|
print(exam) |
|
global outputs |
|
embedding = outputs["class_embeds"][0, outputs["logits"].argmax()] |
|
return embedding.detach().numpy() |
|
|
|
|
|
def sketch2box(sketch_box): |
|
mask = sketch_box["mask"].convert("L") |
|
mask = np.array(mask) |
|
|
|
masked_index = np.where(mask == 255) |
|
if len(masked_index[0]) == 0: |
|
return (sketch_box["image"], []), -1, -1, -1, -1 |
|
xmin, ymin, xmax, ymax = masked_index[1].min(), masked_index[0].min(), masked_index[1].max(), masked_index[0].max() |
|
box = (xmin, ymin, xmax, ymax) |
|
|
|
return (sketch_box["image"], [(box, "manual")]), xmin, ymin, xmax, ymax |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
sketch_box = gr.Image(type="pil", source="upload", tool="sketch") |
|
box_preview = gr.AnnotatedImage(type="pil", interactive=False, height=256) |
|
threshold = gr.Number(0.95, label="threshold", step=0.01) |
|
nms = gr.Number(0.3, label="nms", step=0.01) |
|
cnt = gr.Number(0, label="count", interactive=False) |
|
with gr.Column(): |
|
annotatedimage = gr.AnnotatedImage() |
|
with gr.Row(): |
|
xmin = gr.Number(-1, label="xmin") |
|
ymin = gr.Number(-1, label="ymin") |
|
xmax = gr.Number(-1, label="xmax") |
|
ymax = gr.Number(-1, label="ymax") |
|
with gr.Row(): |
|
run_button = gr.Button(variant="primary") |
|
|
|
|
|
|
|
sketch_box.edit(sketch2box, [sketch_box], [box_preview, xmin, ymin, xmax, ymax]) |
|
xmin.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview]) |
|
ymin.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview]) |
|
xmax.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview]) |
|
ymax.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview]) |
|
threshold.change(threshold_change, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt]) |
|
nms.change(threshold_change, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt]) |
|
run_button.click(one_shot_detect, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt]) |
|
|
|
|
|
|
|
|
|
demo.launch() |