Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageDraw
|
3 |
import torch
|
4 |
-
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
5 |
from transformers.image_transforms import center_to_corners_format
|
6 |
from transformers.models.owlvit.modeling_owlvit import box_iou
|
7 |
from functools import partial
|
|
|
8 |
|
|
|
9 |
|
10 |
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
11 |
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
|
12 |
|
13 |
-
from transformers.models.owlvit.modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput
|
|
|
|
|
14 |
|
15 |
|
16 |
|
@@ -24,9 +28,7 @@ def classpredictionhead_box_forward(
|
|
24 |
|
25 |
# Normalize image and text features
|
26 |
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
|
27 |
-
print(image_class_embeds.shape)
|
28 |
query_embeds = image_class_embeds[0, query_indice].unsqueeze(0).unsqueeze(0)
|
29 |
-
print(query_embeds.shape)
|
30 |
# query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
|
31 |
|
32 |
# Get class predictions
|
@@ -66,6 +68,8 @@ def class_predictor(
|
|
66 |
|
67 |
|
68 |
|
|
|
|
|
69 |
def get_max_iou_indice(target_pred_boxes, query_box, target_sizes):
|
70 |
boxes = center_to_corners_format(target_pred_boxes)
|
71 |
img_h, img_w = target_sizes.unbind(1)
|
@@ -104,6 +108,12 @@ def box_guided_detection(
|
|
104 |
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
|
105 |
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
target_pred_boxes = self.box_predictor(image_feats, feature_map)
|
108 |
|
109 |
# Get MAX IOU box corresponding embedding
|
@@ -113,6 +123,9 @@ def box_guided_detection(
|
|
113 |
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_indice=query_indice)
|
114 |
|
115 |
|
|
|
|
|
|
|
116 |
if not return_dict:
|
117 |
output = (
|
118 |
feature_map,
|
@@ -150,31 +163,30 @@ def prepare_embedds(xmin, ymin, xmax, ymax, image):
|
|
150 |
|
151 |
def manul_box_change(xmin, ymin, xmax, ymax, image):
|
152 |
box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
153 |
-
return (image, [(box, "manul")])
|
154 |
|
155 |
def threshold_change(xmin, ymin, xmax, ymax, image, threshold, nms):
|
156 |
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
157 |
|
158 |
global outputs
|
159 |
-
target_sizes = torch.Tensor([image.size[::-1]])
|
160 |
|
161 |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
|
162 |
|
163 |
boxes = results[0]['boxes'].type(torch.int64).tolist()
|
164 |
scores = results[0]['scores'].tolist()
|
165 |
labels = list(zip(boxes, scores))
|
166 |
-
labels.append((manul_box, "manual"))
|
167 |
|
168 |
cnt = len(boxes)
|
169 |
|
170 |
-
return (image, labels), cnt
|
171 |
|
172 |
def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms):
|
173 |
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
174 |
|
175 |
global outputs
|
176 |
-
target_sizes = torch.Tensor([image.size[::-1]])
|
177 |
-
inputs = processor(images=image.convert("RGB"), return_tensors="pt")
|
178 |
outputs = model.box_guided_detection(**inputs, query_box=torch.Tensor([manul_box]), target_sizes=target_sizes)
|
179 |
|
180 |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
|
@@ -182,37 +194,60 @@ def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms):
|
|
182 |
boxes = results[0]['boxes'].type(torch.int64).tolist()
|
183 |
scores = results[0]['scores'].tolist()
|
184 |
labels = list(zip(boxes, scores))
|
185 |
-
labels.append((manul_box, "manual"))
|
186 |
|
187 |
cnt = len(boxes)
|
188 |
|
189 |
-
return (image, labels), cnt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
|
192 |
with gr.Blocks() as demo:
|
193 |
with gr.Row():
|
194 |
with gr.Column():
|
195 |
-
|
|
|
196 |
threshold = gr.Number(0.95, label="threshold", step=0.01)
|
197 |
nms = gr.Number(0.3, label="nms", step=0.01)
|
198 |
cnt = gr.Number(0, label="count", interactive=False)
|
199 |
with gr.Column():
|
200 |
annotatedimage = gr.AnnotatedImage()
|
201 |
with gr.Row():
|
202 |
-
xmin = gr.Number(
|
203 |
-
ymin = gr.Number(
|
204 |
-
xmax = gr.Number(
|
205 |
-
ymax = gr.Number(
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
216 |
|
217 |
|
218 |
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageDraw
|
3 |
import torch
|
4 |
+
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTModel, OwlViTImageProcessor
|
5 |
from transformers.image_transforms import center_to_corners_format
|
6 |
from transformers.models.owlvit.modeling_owlvit import box_iou
|
7 |
from functools import partial
|
8 |
+
import numpy as np
|
9 |
|
10 |
+
# from utils import iou
|
11 |
|
12 |
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
13 |
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
|
14 |
|
15 |
+
from transformers.models.owlvit.modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTClassPredictionHead
|
16 |
+
|
17 |
+
|
18 |
|
19 |
|
20 |
|
|
|
28 |
|
29 |
# Normalize image and text features
|
30 |
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
|
|
|
31 |
query_embeds = image_class_embeds[0, query_indice].unsqueeze(0).unsqueeze(0)
|
|
|
32 |
# query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
|
33 |
|
34 |
# Get class predictions
|
|
|
68 |
|
69 |
|
70 |
|
71 |
+
|
72 |
+
|
73 |
def get_max_iou_indice(target_pred_boxes, query_box, target_sizes):
|
74 |
boxes = center_to_corners_format(target_pred_boxes)
|
75 |
img_h, img_w = target_sizes.unbind(1)
|
|
|
108 |
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
|
109 |
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
110 |
|
111 |
+
# batch_size, num_patches, num_patches, hidden_dim = query_feature_map.shape
|
112 |
+
# query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
113 |
+
# # Get top class embedding and best box index for each query image in batch
|
114 |
+
# query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(query_image_feats, query_feature_map)
|
115 |
+
|
116 |
+
# Predict object boxes
|
117 |
target_pred_boxes = self.box_predictor(image_feats, feature_map)
|
118 |
|
119 |
# Get MAX IOU box corresponding embedding
|
|
|
123 |
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_indice=query_indice)
|
124 |
|
125 |
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
if not return_dict:
|
130 |
output = (
|
131 |
feature_map,
|
|
|
163 |
|
164 |
def manul_box_change(xmin, ymin, xmax, ymax, image):
|
165 |
box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
166 |
+
return (image["image"], [(box, "manul")])
|
167 |
|
168 |
def threshold_change(xmin, ymin, xmax, ymax, image, threshold, nms):
|
169 |
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
170 |
|
171 |
global outputs
|
172 |
+
target_sizes = torch.Tensor([image["image"].size[::-1]])
|
173 |
|
174 |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
|
175 |
|
176 |
boxes = results[0]['boxes'].type(torch.int64).tolist()
|
177 |
scores = results[0]['scores'].tolist()
|
178 |
labels = list(zip(boxes, scores))
|
|
|
179 |
|
180 |
cnt = len(boxes)
|
181 |
|
182 |
+
return (image["image"], labels), cnt
|
183 |
|
184 |
def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms):
|
185 |
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
186 |
|
187 |
global outputs
|
188 |
+
target_sizes = torch.Tensor([image["image"].size[::-1]])
|
189 |
+
inputs = processor(images=image["image"].convert("RGB"), return_tensors="pt")
|
190 |
outputs = model.box_guided_detection(**inputs, query_box=torch.Tensor([manul_box]), target_sizes=target_sizes)
|
191 |
|
192 |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
|
|
|
194 |
boxes = results[0]['boxes'].type(torch.int64).tolist()
|
195 |
scores = results[0]['scores'].tolist()
|
196 |
labels = list(zip(boxes, scores))
|
|
|
197 |
|
198 |
cnt = len(boxes)
|
199 |
|
200 |
+
return (image["image"], labels), cnt
|
201 |
+
|
202 |
+
def save_embedding(exam):
|
203 |
+
print(exam)
|
204 |
+
global outputs
|
205 |
+
embedding = outputs["class_embeds"][0, outputs["logits"].argmax()]
|
206 |
+
return embedding.detach().numpy()
|
207 |
+
|
208 |
+
|
209 |
+
def sketch2box(sketch_box):
|
210 |
+
mask = sketch_box["mask"].convert("L")
|
211 |
+
mask = np.array(mask)
|
212 |
+
|
213 |
+
masked_index = np.where(mask == 255)
|
214 |
+
if len(masked_index[0]) == 0:
|
215 |
+
return (sketch_box["image"], []), -1, -1, -1, -1
|
216 |
+
xmin, ymin, xmax, ymax = masked_index[1].min(), masked_index[0].min(), masked_index[1].max(), masked_index[0].max()
|
217 |
+
box = (xmin, ymin, xmax, ymax)
|
218 |
+
|
219 |
+
return (sketch_box["image"], [(box, "manual")]), xmin, ymin, xmax, ymax
|
220 |
|
221 |
|
222 |
with gr.Blocks() as demo:
|
223 |
with gr.Row():
|
224 |
with gr.Column():
|
225 |
+
sketch_box = gr.Image(type="pil", source="upload", tool="sketch")
|
226 |
+
box_preview = gr.AnnotatedImage(type="pil", interactive=False, height=256)
|
227 |
threshold = gr.Number(0.95, label="threshold", step=0.01)
|
228 |
nms = gr.Number(0.3, label="nms", step=0.01)
|
229 |
cnt = gr.Number(0, label="count", interactive=False)
|
230 |
with gr.Column():
|
231 |
annotatedimage = gr.AnnotatedImage()
|
232 |
with gr.Row():
|
233 |
+
xmin = gr.Number(-1, label="xmin")
|
234 |
+
ymin = gr.Number(-1, label="ymin")
|
235 |
+
xmax = gr.Number(-1, label="xmax")
|
236 |
+
ymax = gr.Number(-1, label="ymax")
|
237 |
+
with gr.Row():
|
238 |
+
run_button = gr.Button(variant="primary")
|
239 |
+
# save_button = gr.Button("Save", variant="secondary")
|
240 |
+
|
241 |
+
|
242 |
+
sketch_box.edit(sketch2box, [sketch_box], [box_preview, xmin, ymin, xmax, ymax])
|
243 |
+
xmin.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
|
244 |
+
ymin.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
|
245 |
+
xmax.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
|
246 |
+
ymax.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
|
247 |
+
threshold.change(threshold_change, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt])
|
248 |
+
nms.change(threshold_change, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt])
|
249 |
+
run_button.click(one_shot_detect, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt])
|
250 |
+
|
251 |
|
252 |
|
253 |
|