DocTr / IllTr.py
HaoFeng2019's picture
Upload 7 files
ae3b630
import torch
import torch.nn as nn
from torch.functional import Tensor
from torch.nn.modules.activation import Tanhshrink
from timm.models.layers import trunc_normal_
from functools import partial
class Ffn(nn.Module):
# feed forward network layer after attention
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, task_embed=None, level=0):
N, L, D = x.shape
qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# for decoder's task_embedding of different levels of attention layers
if task_embed != None:
_N, _H, _L, _D = q.shape
task_embed = task_embed.reshape(1, _H, _L, _D)
if level == 1:
q += task_embed
k += task_embed
if level == 2:
q += task_embed
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(N, L, D)
x = self.proj(x)
x = self.proj_drop(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
class DecoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn1 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
self.attn2 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm3 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, task_embed):
x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1)
x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2)
x = x + self.ffn(self.norm3(x))
return x
class ResBlock(nn.Module):
def __init__(self, channels):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
self.bn1 = nn.InstanceNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
self.bn2 = nn.InstanceNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class Head(nn.Module):
def __init__(self, in_channels, out_channels):
super(Head, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
padding=1, bias=False)
self.bn1 = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.resblock = ResBlock(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.resblock(out)
return out
class PatchEmbed(nn.Module):
""" Feature to Patch Embedding
input : N C H W
output: N num_patch P^2*C
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x):
N, C, H, W = ori_shape = x.shape
p = self.patch_size
num_patches = (H // p) * (W // p)
out = torch.zeros((N, num_patches, self.dim)).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, k, :] = x[:, :, i:i + p, j:j + p].flatten(1)
i += p
return out, ori_shape
class DePatchEmbed(nn.Module):
""" Patch Embedding to Feature
input : N num_patch P^2*C
output: N C H W
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.num_patches = None
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x, ori_shape):
N, num_patches, dim = x.shape
_, C, H, W = ori_shape
p = self.patch_size
out = torch.zeros(ori_shape).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, :, i:i + p, j:j + p] = x[:, k, :].reshape(N, C, p, p)
i += p
return out
class Tail(nn.Module):
def __init__(self, in_channels, out_channels):
super(Tail, self).__init__()
self.output = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, x):
out = self.output(x)
return out
class IllTr_Net(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, patch_size=1, in_channels=3, mid_channels=16, num_classes=1000, depth=12,
num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
norm_layer=nn.LayerNorm):
super(IllTr_Net, self).__init__()
self.num_classes = num_classes
self.embed_dim = patch_size * patch_size * mid_channels
self.head = Head(in_channels, mid_channels)
self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels)
self.embed_dim = self.patch_embedding.dim
if self.embed_dim % num_heads != 0:
raise RuntimeError("Embedding dim must be devided by numbers of heads")
self.pos_embed = nn.Parameter(torch.zeros(1, (128 // patch_size) ** 2, self.embed_dim))
self.task_embed = nn.Parameter(torch.zeros(6, 1, (128 // patch_size) ** 2, self.embed_dim))
self.encoder = nn.ModuleList([
EncoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.decoder = nn.ModuleList([
DecoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels)
# tail
self.tail = Tail(int(mid_channels), in_channels)
self.acf = nn.Hardtanh(0,1)
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.head(x)
x, ori_shape = self.patch_embedding(x)
x = x + self.pos_embed[:, :x.shape[1]]
for blk in self.encoder:
x = blk(x)
for blk in self.decoder:
x = blk(x, self.task_embed[0, :, :x.shape[1]])
x = self.de_patch_embedding(x, ori_shape)
x = self.tail(x)
x = self.acf(x)
return x
def IllTr(**kwargs):
model = IllTr_Net(
patch_size=4, depth=6, num_heads=8, ffn_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model