Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torch.functional import Tensor | |
from torch.nn.modules.activation import Tanhshrink | |
from timm.models.layers import trunc_normal_ | |
from functools import partial | |
class Ffn(nn.Module): | |
# feed forward network layer after attention | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, task_embed=None, level=0): | |
N, L, D = x.shape | |
qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
# for decoder's task_embedding of different levels of attention layers | |
if task_embed != None: | |
_N, _H, _L, _D = q.shape | |
task_embed = task_embed.reshape(1, _H, _L, _D) | |
if level == 1: | |
q += task_embed | |
k += task_embed | |
if level == 2: | |
q += task_embed | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(N, L, D) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class EncoderLayer(nn.Module): | |
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.norm2 = norm_layer(dim) | |
ffn_hidden_dim = int(dim * ffn_ratio) | |
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.attn(self.norm1(x)) | |
x = x + self.ffn(self.norm2(x)) | |
return x | |
class DecoderLayer(nn.Module): | |
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn1 = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.norm2 = norm_layer(dim) | |
self.attn2 = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.norm3 = norm_layer(dim) | |
ffn_hidden_dim = int(dim * ffn_ratio) | |
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, task_embed): | |
x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1) | |
x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2) | |
x = x + self.ffn(self.norm3(x)) | |
return x | |
class ResBlock(nn.Module): | |
def __init__(self, channels): | |
super(ResBlock, self).__init__() | |
self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1, | |
padding=2, bias=False) | |
self.bn1 = nn.InstanceNorm2d(channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1, | |
padding=2, bias=False) | |
self.bn2 = nn.InstanceNorm2d(channels) | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Head(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(Head, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, | |
padding=1, bias=False) | |
self.bn1 = nn.InstanceNorm2d(out_channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.resblock = ResBlock(out_channels) | |
def forward(self, x): | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.resblock(out) | |
return out | |
class PatchEmbed(nn.Module): | |
""" Feature to Patch Embedding | |
input : N C H W | |
output: N num_patch P^2*C | |
""" | |
def __init__(self, patch_size=1, in_channels=64): | |
super().__init__() | |
self.patch_size = patch_size | |
self.dim = self.patch_size ** 2 * in_channels | |
def forward(self, x): | |
N, C, H, W = ori_shape = x.shape | |
p = self.patch_size | |
num_patches = (H // p) * (W // p) | |
out = torch.zeros((N, num_patches, self.dim)).to(x.device) | |
i, j = 0, 0 | |
for k in range(num_patches): | |
if i + p > W: | |
i = 0 | |
j += p | |
out[:, k, :] = x[:, :, i:i + p, j:j + p].flatten(1) | |
i += p | |
return out, ori_shape | |
class DePatchEmbed(nn.Module): | |
""" Patch Embedding to Feature | |
input : N num_patch P^2*C | |
output: N C H W | |
""" | |
def __init__(self, patch_size=1, in_channels=64): | |
super().__init__() | |
self.patch_size = patch_size | |
self.num_patches = None | |
self.dim = self.patch_size ** 2 * in_channels | |
def forward(self, x, ori_shape): | |
N, num_patches, dim = x.shape | |
_, C, H, W = ori_shape | |
p = self.patch_size | |
out = torch.zeros(ori_shape).to(x.device) | |
i, j = 0, 0 | |
for k in range(num_patches): | |
if i + p > W: | |
i = 0 | |
j += p | |
out[:, :, i:i + p, j:j + p] = x[:, k, :].reshape(N, C, p, p) | |
i += p | |
return out | |
class Tail(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(Tail, self).__init__() | |
self.output = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
def forward(self, x): | |
out = self.output(x) | |
return out | |
class IllTr_Net(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, patch_size=1, in_channels=3, mid_channels=16, num_classes=1000, depth=12, | |
num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
norm_layer=nn.LayerNorm): | |
super(IllTr_Net, self).__init__() | |
self.num_classes = num_classes | |
self.embed_dim = patch_size * patch_size * mid_channels | |
self.head = Head(in_channels, mid_channels) | |
self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels) | |
self.embed_dim = self.patch_embedding.dim | |
if self.embed_dim % num_heads != 0: | |
raise RuntimeError("Embedding dim must be devided by numbers of heads") | |
self.pos_embed = nn.Parameter(torch.zeros(1, (128 // patch_size) ** 2, self.embed_dim)) | |
self.task_embed = nn.Parameter(torch.zeros(6, 1, (128 // patch_size) ** 2, self.embed_dim)) | |
self.encoder = nn.ModuleList([ | |
EncoderLayer( | |
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) | |
for _ in range(depth)]) | |
self.decoder = nn.ModuleList([ | |
DecoderLayer( | |
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) | |
for _ in range(depth)]) | |
self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels) | |
# tail | |
self.tail = Tail(int(mid_channels), in_channels) | |
self.acf = nn.Hardtanh(0,1) | |
trunc_normal_(self.pos_embed, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
x = self.head(x) | |
x, ori_shape = self.patch_embedding(x) | |
x = x + self.pos_embed[:, :x.shape[1]] | |
for blk in self.encoder: | |
x = blk(x) | |
for blk in self.decoder: | |
x = blk(x, self.task_embed[0, :, :x.shape[1]]) | |
x = self.de_patch_embedding(x, ori_shape) | |
x = self.tail(x) | |
x = self.acf(x) | |
return x | |
def IllTr(**kwargs): | |
model = IllTr_Net( | |
patch_size=4, depth=6, num_heads=8, ffn_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs) | |
return model | |