Spaces:
Running
Running
HaoFeng2019
commited on
Commit
•
ae3b630
1
Parent(s):
f4ce0ac
Upload 7 files
Browse files- GeoTr.py +233 -0
- IllTr.py +284 -0
- demo.py +178 -0
- extractor.py +115 -0
- position_encoding.py +111 -0
- requirements.txt +7 -0
- seg.py +567 -0
GeoTr.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from extractor import BasicEncoder
|
2 |
+
from position_encoding import build_position_encoding
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torch import nn, Tensor
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import copy
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
|
13 |
+
class attnLayer(nn.Module):
|
14 |
+
def __init__(self, d_model, nhead=8, dim_feedforward=2048, dropout=0.1,
|
15 |
+
activation="relu", normalize_before=False):
|
16 |
+
super().__init__()
|
17 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
18 |
+
self.multihead_attn_list = nn.ModuleList([copy.deepcopy(nn.MultiheadAttention(d_model, nhead, dropout=dropout)) for i in range(2)])
|
19 |
+
# Implementation of Feedforward model
|
20 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
21 |
+
self.dropout = nn.Dropout(dropout)
|
22 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
23 |
+
|
24 |
+
self.norm1 = nn.LayerNorm(d_model)
|
25 |
+
self.norm2_list = nn.ModuleList([copy.deepcopy(nn.LayerNorm(d_model)) for i in range(2)])
|
26 |
+
|
27 |
+
self.norm3 = nn.LayerNorm(d_model)
|
28 |
+
self.dropout1 = nn.Dropout(dropout)
|
29 |
+
self.dropout2_list = nn.ModuleList([copy.deepcopy(nn.Dropout(dropout)) for i in range(2)])
|
30 |
+
self.dropout3 = nn.Dropout(dropout)
|
31 |
+
|
32 |
+
self.activation = _get_activation_fn(activation)
|
33 |
+
self.normalize_before = normalize_before
|
34 |
+
|
35 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
36 |
+
return tensor if pos is None else tensor + pos
|
37 |
+
|
38 |
+
def forward_post(self, tgt, memory_list, tgt_mask=None, memory_mask=None,
|
39 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
40 |
+
pos=None, memory_pos=None):
|
41 |
+
q = k = self.with_pos_embed(tgt, pos)
|
42 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
43 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
44 |
+
tgt = tgt + self.dropout1(tgt2)
|
45 |
+
tgt = self.norm1(tgt)
|
46 |
+
for memory, multihead_attn, norm2, dropout2, m_pos in zip(memory_list, self.multihead_attn_list, self.norm2_list, self.dropout2_list, memory_pos):
|
47 |
+
tgt2 = multihead_attn(query=self.with_pos_embed(tgt, pos),
|
48 |
+
key=self.with_pos_embed(memory, m_pos),
|
49 |
+
value=memory, attn_mask=memory_mask,
|
50 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
51 |
+
tgt = tgt + dropout2(tgt2)
|
52 |
+
tgt = norm2(tgt)
|
53 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
54 |
+
tgt = tgt + self.dropout3(tgt2)
|
55 |
+
tgt = self.norm3(tgt)
|
56 |
+
return tgt
|
57 |
+
|
58 |
+
def forward_pre(self, tgt, memory, tgt_mask=None, memory_mask=None,
|
59 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
60 |
+
pos=None, memory_pos=None):
|
61 |
+
tgt2 = self.norm1(tgt)
|
62 |
+
q = k = self.with_pos_embed(tgt2, pos)
|
63 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
64 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
65 |
+
tgt = tgt + self.dropout1(tgt2)
|
66 |
+
tgt2 = self.norm2(tgt)
|
67 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, pos),
|
68 |
+
key=self.with_pos_embed(memory, memory_pos),
|
69 |
+
value=memory, attn_mask=memory_mask,
|
70 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
71 |
+
tgt = tgt + self.dropout2(tgt2)
|
72 |
+
tgt2 = self.norm3(tgt)
|
73 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
74 |
+
tgt = tgt + self.dropout3(tgt2)
|
75 |
+
return tgt
|
76 |
+
|
77 |
+
def forward(self, tgt, memory_list, tgt_mask=None, memory_mask=None,
|
78 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
79 |
+
pos=None, memory_pos=None):
|
80 |
+
if self.normalize_before:
|
81 |
+
return self.forward_pre(tgt, memory_list, tgt_mask, memory_mask,
|
82 |
+
tgt_key_padding_mask, memory_key_padding_mask, pos, memory_pos)
|
83 |
+
return self.forward_post(tgt, memory_list, tgt_mask, memory_mask,
|
84 |
+
tgt_key_padding_mask, memory_key_padding_mask, pos, memory_pos)
|
85 |
+
|
86 |
+
|
87 |
+
def _get_clones(module, N):
|
88 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
89 |
+
|
90 |
+
|
91 |
+
def _get_activation_fn(activation):
|
92 |
+
"""Return an activation function given a string"""
|
93 |
+
if activation == "relu":
|
94 |
+
return F.relu
|
95 |
+
if activation == "gelu":
|
96 |
+
return F.gelu
|
97 |
+
if activation == "glu":
|
98 |
+
return F.glu
|
99 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
100 |
+
|
101 |
+
|
102 |
+
class TransDecoder(nn.Module):
|
103 |
+
def __init__(self, num_attn_layers, hidden_dim=128):
|
104 |
+
super(TransDecoder, self).__init__()
|
105 |
+
attn_layer = attnLayer(hidden_dim)
|
106 |
+
self.layers = _get_clones(attn_layer, num_attn_layers)
|
107 |
+
self.position_embedding = build_position_encoding(hidden_dim)
|
108 |
+
|
109 |
+
def forward(self, imgf, query_embed):
|
110 |
+
pos = self.position_embedding(torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool().cuda()) # torch.Size([1, 128, 36, 36])
|
111 |
+
|
112 |
+
bs, c, h, w = imgf.shape
|
113 |
+
imgf = imgf.flatten(2).permute(2, 0, 1)
|
114 |
+
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
115 |
+
pos = pos.flatten(2).permute(2, 0, 1)
|
116 |
+
|
117 |
+
for layer in self.layers:
|
118 |
+
query_embed = layer(query_embed, [imgf], pos=pos, memory_pos=[pos, pos])
|
119 |
+
query_embed = query_embed.permute(1, 2, 0).reshape(bs, c, h, w)
|
120 |
+
|
121 |
+
return query_embed
|
122 |
+
|
123 |
+
|
124 |
+
class TransEncoder(nn.Module):
|
125 |
+
def __init__(self, num_attn_layers, hidden_dim=128):
|
126 |
+
super(TransEncoder, self).__init__()
|
127 |
+
attn_layer = attnLayer(hidden_dim)
|
128 |
+
self.layers = _get_clones(attn_layer, num_attn_layers)
|
129 |
+
self.position_embedding = build_position_encoding(hidden_dim)
|
130 |
+
|
131 |
+
def forward(self, imgf):
|
132 |
+
pos = self.position_embedding(torch.ones(imgf.shape[0], imgf.shape[2], imgf.shape[3]).bool().cuda()) # torch.Size([1, 128, 36, 36])
|
133 |
+
bs, c, h, w = imgf.shape
|
134 |
+
imgf = imgf.flatten(2).permute(2, 0, 1)
|
135 |
+
pos = pos.flatten(2).permute(2, 0, 1)
|
136 |
+
|
137 |
+
for layer in self.layers:
|
138 |
+
imgf = layer(imgf, [imgf], pos=pos, memory_pos=[pos, pos])
|
139 |
+
imgf = imgf.permute(1, 2, 0).reshape(bs, c, h, w)
|
140 |
+
|
141 |
+
return imgf
|
142 |
+
|
143 |
+
|
144 |
+
class FlowHead(nn.Module):
|
145 |
+
def __init__(self, input_dim=128, hidden_dim=256):
|
146 |
+
super(FlowHead, self).__init__()
|
147 |
+
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
|
148 |
+
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
|
149 |
+
self.relu = nn.ReLU(inplace=True)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
return self.conv2(self.relu(self.conv1(x)))
|
153 |
+
|
154 |
+
|
155 |
+
class UpdateBlock(nn.Module):
|
156 |
+
def __init__(self, hidden_dim=128):
|
157 |
+
super(UpdateBlock, self).__init__()
|
158 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
|
159 |
+
self.mask = nn.Sequential(
|
160 |
+
nn.Conv2d(hidden_dim, 256, 3, padding=1),
|
161 |
+
nn.ReLU(inplace=True),
|
162 |
+
nn.Conv2d(256, 64*9, 1, padding=0))
|
163 |
+
|
164 |
+
def forward(self, imgf, coords1):
|
165 |
+
mask = .25 * self.mask(imgf) # scale mask to balence gradients
|
166 |
+
dflow = self.flow_head(imgf)
|
167 |
+
coords1 = coords1 + dflow
|
168 |
+
|
169 |
+
return mask, coords1
|
170 |
+
|
171 |
+
|
172 |
+
def coords_grid(batch, ht, wd):
|
173 |
+
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
174 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
175 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
176 |
+
|
177 |
+
|
178 |
+
def upflow8(flow, mode='bilinear'):
|
179 |
+
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
180 |
+
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
181 |
+
|
182 |
+
|
183 |
+
class GeoTr(nn.Module):
|
184 |
+
def __init__(self, num_attn_layers):
|
185 |
+
super(GeoTr, self).__init__()
|
186 |
+
self.num_attn_layers = num_attn_layers
|
187 |
+
|
188 |
+
self.hidden_dim = hdim = 256
|
189 |
+
|
190 |
+
self.fnet = BasicEncoder(output_dim=hdim, norm_fn='instance')
|
191 |
+
|
192 |
+
self.TransEncoder = TransEncoder(self.num_attn_layers, hidden_dim=hdim)
|
193 |
+
self.TransDecoder = TransDecoder(self.num_attn_layers, hidden_dim=hdim)
|
194 |
+
self.query_embed = nn.Embedding(1296, self.hidden_dim)
|
195 |
+
|
196 |
+
self.update_block = UpdateBlock(self.hidden_dim)
|
197 |
+
|
198 |
+
def initialize_flow(self, img):
|
199 |
+
N, C, H, W = img.shape
|
200 |
+
coodslar = coords_grid(N, H, W).to(img.device)
|
201 |
+
coords0 = coords_grid(N, H // 8, W // 8).to(img.device)
|
202 |
+
coords1 = coords_grid(N, H // 8, W // 8).to(img.device)
|
203 |
+
|
204 |
+
return coodslar, coords0, coords1
|
205 |
+
|
206 |
+
def upsample_flow(self, flow, mask):
|
207 |
+
N, _, H, W = flow.shape
|
208 |
+
mask = mask.view(N, 1, 9, 8, 8, H, W)
|
209 |
+
mask = torch.softmax(mask, dim=2)
|
210 |
+
|
211 |
+
up_flow = F.unfold(8 * flow, [3, 3], padding=1)
|
212 |
+
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
|
213 |
+
|
214 |
+
up_flow = torch.sum(mask * up_flow, dim=2)
|
215 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
216 |
+
|
217 |
+
return up_flow.reshape(N, 2, 8 * H, 8 * W)
|
218 |
+
|
219 |
+
def forward(self, image1):
|
220 |
+
fmap = self.fnet(image1)
|
221 |
+
fmap = torch.relu(fmap)
|
222 |
+
|
223 |
+
fmap = self.TransEncoder(fmap)
|
224 |
+
fmap = self.TransDecoder(fmap, self.query_embed.weight)
|
225 |
+
|
226 |
+
# convex upsample baesd on fmap
|
227 |
+
coodslar, coords0, coords1 = self.initialize_flow(image1)
|
228 |
+
coords1 = coords1.detach()
|
229 |
+
mask, coords1 = self.update_block(fmap, coords1)
|
230 |
+
flow_up = self.upsample_flow(coords1 - coords0, mask)
|
231 |
+
bm_up = coodslar + flow_up
|
232 |
+
|
233 |
+
return bm_up
|
IllTr.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.functional import Tensor
|
4 |
+
from torch.nn.modules.activation import Tanhshrink
|
5 |
+
from timm.models.layers import trunc_normal_
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
|
9 |
+
class Ffn(nn.Module):
|
10 |
+
# feed forward network layer after attention
|
11 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
12 |
+
super().__init__()
|
13 |
+
out_features = out_features or in_features
|
14 |
+
hidden_features = hidden_features or in_features
|
15 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
16 |
+
self.act = act_layer()
|
17 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
18 |
+
self.drop = nn.Dropout(drop)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = self.fc1(x)
|
22 |
+
x = self.act(x)
|
23 |
+
x = self.drop(x)
|
24 |
+
x = self.fc2(x)
|
25 |
+
x = self.drop(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
class Attention(nn.Module):
|
30 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
31 |
+
super().__init__()
|
32 |
+
self.num_heads = num_heads
|
33 |
+
head_dim = dim // num_heads
|
34 |
+
self.scale = qk_scale or head_dim ** -0.5
|
35 |
+
|
36 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
37 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
38 |
+
self.proj = nn.Linear(dim, dim)
|
39 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
40 |
+
|
41 |
+
def forward(self, x, task_embed=None, level=0):
|
42 |
+
N, L, D = x.shape
|
43 |
+
qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads).permute(2, 0, 3, 1, 4)
|
44 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
45 |
+
|
46 |
+
# for decoder's task_embedding of different levels of attention layers
|
47 |
+
if task_embed != None:
|
48 |
+
_N, _H, _L, _D = q.shape
|
49 |
+
task_embed = task_embed.reshape(1, _H, _L, _D)
|
50 |
+
if level == 1:
|
51 |
+
q += task_embed
|
52 |
+
k += task_embed
|
53 |
+
if level == 2:
|
54 |
+
q += task_embed
|
55 |
+
|
56 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
57 |
+
attn = attn.softmax(dim=-1)
|
58 |
+
attn = self.attn_drop(attn)
|
59 |
+
|
60 |
+
x = (attn @ v).transpose(1, 2).reshape(N, L, D)
|
61 |
+
x = self.proj(x)
|
62 |
+
x = self.proj_drop(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class EncoderLayer(nn.Module):
|
67 |
+
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
68 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
69 |
+
super().__init__()
|
70 |
+
self.norm1 = norm_layer(dim)
|
71 |
+
self.attn = Attention(
|
72 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
73 |
+
self.norm2 = norm_layer(dim)
|
74 |
+
ffn_hidden_dim = int(dim * ffn_ratio)
|
75 |
+
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
x = x + self.attn(self.norm1(x))
|
79 |
+
x = x + self.ffn(self.norm2(x))
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class DecoderLayer(nn.Module):
|
84 |
+
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
85 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
86 |
+
super().__init__()
|
87 |
+
self.norm1 = norm_layer(dim)
|
88 |
+
self.attn1 = Attention(
|
89 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
90 |
+
self.norm2 = norm_layer(dim)
|
91 |
+
self.attn2 = Attention(
|
92 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
93 |
+
self.norm3 = norm_layer(dim)
|
94 |
+
ffn_hidden_dim = int(dim * ffn_ratio)
|
95 |
+
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
|
96 |
+
|
97 |
+
def forward(self, x, task_embed):
|
98 |
+
x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1)
|
99 |
+
x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2)
|
100 |
+
x = x + self.ffn(self.norm3(x))
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
class ResBlock(nn.Module):
|
105 |
+
def __init__(self, channels):
|
106 |
+
super(ResBlock, self).__init__()
|
107 |
+
self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
|
108 |
+
padding=2, bias=False)
|
109 |
+
self.bn1 = nn.InstanceNorm2d(channels)
|
110 |
+
self.relu = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
|
112 |
+
padding=2, bias=False)
|
113 |
+
self.bn2 = nn.InstanceNorm2d(channels)
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
residual = x
|
117 |
+
|
118 |
+
out = self.conv1(x)
|
119 |
+
out = self.bn1(out)
|
120 |
+
out = self.relu(out)
|
121 |
+
|
122 |
+
out = self.conv2(out)
|
123 |
+
out = self.bn2(out)
|
124 |
+
|
125 |
+
out += residual
|
126 |
+
out = self.relu(out)
|
127 |
+
|
128 |
+
return out
|
129 |
+
|
130 |
+
|
131 |
+
class Head(nn.Module):
|
132 |
+
def __init__(self, in_channels, out_channels):
|
133 |
+
super(Head, self).__init__()
|
134 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
|
135 |
+
padding=1, bias=False)
|
136 |
+
self.bn1 = nn.InstanceNorm2d(out_channels)
|
137 |
+
self.relu = nn.ReLU(inplace=True)
|
138 |
+
self.resblock = ResBlock(out_channels)
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
out = self.conv1(x)
|
142 |
+
out = self.bn1(out)
|
143 |
+
out = self.relu(out)
|
144 |
+
|
145 |
+
out = self.resblock(out)
|
146 |
+
|
147 |
+
return out
|
148 |
+
|
149 |
+
|
150 |
+
class PatchEmbed(nn.Module):
|
151 |
+
""" Feature to Patch Embedding
|
152 |
+
input : N C H W
|
153 |
+
output: N num_patch P^2*C
|
154 |
+
"""
|
155 |
+
def __init__(self, patch_size=1, in_channels=64):
|
156 |
+
super().__init__()
|
157 |
+
self.patch_size = patch_size
|
158 |
+
self.dim = self.patch_size ** 2 * in_channels
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
N, C, H, W = ori_shape = x.shape
|
162 |
+
|
163 |
+
p = self.patch_size
|
164 |
+
num_patches = (H // p) * (W // p)
|
165 |
+
out = torch.zeros((N, num_patches, self.dim)).to(x.device)
|
166 |
+
i, j = 0, 0
|
167 |
+
for k in range(num_patches):
|
168 |
+
if i + p > W:
|
169 |
+
i = 0
|
170 |
+
j += p
|
171 |
+
out[:, k, :] = x[:, :, i:i + p, j:j + p].flatten(1)
|
172 |
+
i += p
|
173 |
+
return out, ori_shape
|
174 |
+
|
175 |
+
|
176 |
+
class DePatchEmbed(nn.Module):
|
177 |
+
""" Patch Embedding to Feature
|
178 |
+
input : N num_patch P^2*C
|
179 |
+
output: N C H W
|
180 |
+
"""
|
181 |
+
def __init__(self, patch_size=1, in_channels=64):
|
182 |
+
super().__init__()
|
183 |
+
self.patch_size = patch_size
|
184 |
+
self.num_patches = None
|
185 |
+
self.dim = self.patch_size ** 2 * in_channels
|
186 |
+
|
187 |
+
def forward(self, x, ori_shape):
|
188 |
+
N, num_patches, dim = x.shape
|
189 |
+
_, C, H, W = ori_shape
|
190 |
+
p = self.patch_size
|
191 |
+
out = torch.zeros(ori_shape).to(x.device)
|
192 |
+
i, j = 0, 0
|
193 |
+
for k in range(num_patches):
|
194 |
+
if i + p > W:
|
195 |
+
i = 0
|
196 |
+
j += p
|
197 |
+
out[:, :, i:i + p, j:j + p] = x[:, k, :].reshape(N, C, p, p)
|
198 |
+
i += p
|
199 |
+
return out
|
200 |
+
|
201 |
+
|
202 |
+
class Tail(nn.Module):
|
203 |
+
def __init__(self, in_channels, out_channels):
|
204 |
+
super(Tail, self).__init__()
|
205 |
+
self.output = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
206 |
+
|
207 |
+
def forward(self, x):
|
208 |
+
out = self.output(x)
|
209 |
+
return out
|
210 |
+
|
211 |
+
|
212 |
+
class IllTr_Net(nn.Module):
|
213 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(self, patch_size=1, in_channels=3, mid_channels=16, num_classes=1000, depth=12,
|
217 |
+
num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
218 |
+
norm_layer=nn.LayerNorm):
|
219 |
+
super(IllTr_Net, self).__init__()
|
220 |
+
|
221 |
+
self.num_classes = num_classes
|
222 |
+
self.embed_dim = patch_size * patch_size * mid_channels
|
223 |
+
self.head = Head(in_channels, mid_channels)
|
224 |
+
self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels)
|
225 |
+
self.embed_dim = self.patch_embedding.dim
|
226 |
+
if self.embed_dim % num_heads != 0:
|
227 |
+
raise RuntimeError("Embedding dim must be devided by numbers of heads")
|
228 |
+
|
229 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, (128 // patch_size) ** 2, self.embed_dim))
|
230 |
+
self.task_embed = nn.Parameter(torch.zeros(6, 1, (128 // patch_size) ** 2, self.embed_dim))
|
231 |
+
|
232 |
+
self.encoder = nn.ModuleList([
|
233 |
+
EncoderLayer(
|
234 |
+
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
235 |
+
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
|
236 |
+
for _ in range(depth)])
|
237 |
+
self.decoder = nn.ModuleList([
|
238 |
+
DecoderLayer(
|
239 |
+
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
240 |
+
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
|
241 |
+
for _ in range(depth)])
|
242 |
+
|
243 |
+
self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels)
|
244 |
+
# tail
|
245 |
+
self.tail = Tail(int(mid_channels), in_channels)
|
246 |
+
|
247 |
+
self.acf = nn.Hardtanh(0,1)
|
248 |
+
|
249 |
+
trunc_normal_(self.pos_embed, std=.02)
|
250 |
+
self.apply(self._init_weights)
|
251 |
+
|
252 |
+
def _init_weights(self, m):
|
253 |
+
if isinstance(m, nn.Linear):
|
254 |
+
trunc_normal_(m.weight, std=.02)
|
255 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
256 |
+
nn.init.constant_(m.bias, 0)
|
257 |
+
elif isinstance(m, nn.LayerNorm):
|
258 |
+
nn.init.constant_(m.bias, 0)
|
259 |
+
nn.init.constant_(m.weight, 1.0)
|
260 |
+
|
261 |
+
def forward(self, x):
|
262 |
+
x = self.head(x)
|
263 |
+
x, ori_shape = self.patch_embedding(x)
|
264 |
+
x = x + self.pos_embed[:, :x.shape[1]]
|
265 |
+
|
266 |
+
for blk in self.encoder:
|
267 |
+
x = blk(x)
|
268 |
+
|
269 |
+
for blk in self.decoder:
|
270 |
+
x = blk(x, self.task_embed[0, :, :x.shape[1]])
|
271 |
+
|
272 |
+
x = self.de_patch_embedding(x, ori_shape)
|
273 |
+
x = self.tail(x)
|
274 |
+
|
275 |
+
x = self.acf(x)
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
def IllTr(**kwargs):
|
280 |
+
model = IllTr_Net(
|
281 |
+
patch_size=4, depth=6, num_heads=8, ffn_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
282 |
+
**kwargs)
|
283 |
+
|
284 |
+
return model
|
demo.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#origin
|
2 |
+
|
3 |
+
from seg import U2NETP
|
4 |
+
from GeoTr import GeoTr
|
5 |
+
from IllTr import IllTr
|
6 |
+
from inference_ill import rec_ill
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import skimage.io as io
|
12 |
+
import numpy as np
|
13 |
+
import cv2
|
14 |
+
import glob
|
15 |
+
import os
|
16 |
+
from PIL import Image
|
17 |
+
import argparse
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings('ignore')
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
import gradio as gr
|
26 |
+
|
27 |
+
|
28 |
+
class GeoTr_Seg(nn.Module):
|
29 |
+
def __init__(self):
|
30 |
+
super(GeoTr_Seg, self).__init__()
|
31 |
+
self.msk = U2NETP(3, 1)
|
32 |
+
self.GeoTr = GeoTr(num_attn_layers=6)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
|
36 |
+
msk = (msk > 0.5).float()
|
37 |
+
x = msk * x
|
38 |
+
|
39 |
+
bm = self.GeoTr(x)
|
40 |
+
bm = (2 * (bm / 286.8) - 1) * 0.99
|
41 |
+
|
42 |
+
return bm
|
43 |
+
|
44 |
+
|
45 |
+
def reload_model(model, path=""):
|
46 |
+
if not bool(path):
|
47 |
+
return model
|
48 |
+
else:
|
49 |
+
model_dict = model.state_dict()
|
50 |
+
pretrained_dict = torch.load(path, map_location='cuda:0')
|
51 |
+
print(len(pretrained_dict.keys()))
|
52 |
+
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
|
53 |
+
print(len(pretrained_dict.keys()))
|
54 |
+
model_dict.update(pretrained_dict)
|
55 |
+
model.load_state_dict(model_dict)
|
56 |
+
|
57 |
+
return model
|
58 |
+
|
59 |
+
|
60 |
+
def reload_segmodel(model, path=""):
|
61 |
+
if not bool(path):
|
62 |
+
return model
|
63 |
+
else:
|
64 |
+
model_dict = model.state_dict()
|
65 |
+
pretrained_dict = torch.load(path, map_location='cuda:0')
|
66 |
+
print(len(pretrained_dict.keys()))
|
67 |
+
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
|
68 |
+
print(len(pretrained_dict.keys()))
|
69 |
+
model_dict.update(pretrained_dict)
|
70 |
+
model.load_state_dict(model_dict)
|
71 |
+
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
def rec(opt):
|
76 |
+
# print(torch.__version__) # 1.5.1
|
77 |
+
img_list = os.listdir(opt.distorrted_path) # distorted images list
|
78 |
+
|
79 |
+
if not os.path.exists(opt.gsave_path): # create save path
|
80 |
+
os.mkdir(opt.gsave_path)
|
81 |
+
if not os.path.exists(opt.isave_path): # create save path
|
82 |
+
os.mkdir(opt.isave_path)
|
83 |
+
|
84 |
+
GeoTr_Seg_model = GeoTr_Seg().cuda()
|
85 |
+
# reload segmentation model
|
86 |
+
reload_segmodel(GeoTr_Seg_model.msk, opt.Seg_path)
|
87 |
+
# reload geometric unwarping model
|
88 |
+
reload_model(GeoTr_Seg_model.GeoTr, opt.GeoTr_path)
|
89 |
+
|
90 |
+
IllTr_model = IllTr().cuda()
|
91 |
+
# reload illumination rectification model
|
92 |
+
reload_model(IllTr_model, opt.IllTr_path)
|
93 |
+
|
94 |
+
# To eval mode
|
95 |
+
GeoTr_Seg_model.eval()
|
96 |
+
IllTr_model.eval()
|
97 |
+
|
98 |
+
for img_path in img_list:
|
99 |
+
name = img_path.split('.')[-2] # image name
|
100 |
+
|
101 |
+
img_path = opt.distorrted_path + img_path # read image and to tensor
|
102 |
+
im_ori = np.array(Image.open(img_path))[:, :, :3] / 255.
|
103 |
+
h, w, _ = im_ori.shape
|
104 |
+
im = cv2.resize(im_ori, (288, 288))
|
105 |
+
im = im.transpose(2, 0, 1)
|
106 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
# geometric unwarping
|
110 |
+
bm = GeoTr_Seg_model(im.cuda())
|
111 |
+
bm = bm.cpu()
|
112 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
113 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
114 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
115 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
116 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
117 |
+
|
118 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2,0,1).unsqueeze(0).float(), lbl, align_corners=True)
|
119 |
+
img_geo = ((out[0]*255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8)
|
120 |
+
cv2.imwrite(opt.gsave_path + name + '_geo' + '.png', img_geo) # save
|
121 |
+
|
122 |
+
# illumination rectification
|
123 |
+
if opt.ill_rec:
|
124 |
+
ill_savep = opt.isave_path + name + '_ill' + '.png'
|
125 |
+
rec_ill(IllTr_model, img_geo, saveRecPath=ill_savep)
|
126 |
+
|
127 |
+
print('Done: ', img_path)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
def process_image(input_image):
|
135 |
+
GeoTr_Seg_model = GeoTr_Seg().cuda()
|
136 |
+
reload_segmodel(GeoTr_Seg_model.msk, './model_pretrained/seg.pth')
|
137 |
+
reload_model(GeoTr_Seg_model.GeoTr, './model_pretrained/geotr.pth')
|
138 |
+
|
139 |
+
IllTr_model = IllTr().cuda()
|
140 |
+
reload_model(IllTr_model, './model_pretrained/illtr.pth')
|
141 |
+
|
142 |
+
GeoTr_Seg_model.eval()
|
143 |
+
IllTr_model.eval()
|
144 |
+
|
145 |
+
im_ori = np.array(input_image)[:, :, :3] / 255.
|
146 |
+
h, w, _ = im_ori.shape
|
147 |
+
im = cv2.resize(im_ori, (288, 288))
|
148 |
+
im = im.transpose(2, 0, 1)
|
149 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
150 |
+
|
151 |
+
with torch.no_grad():
|
152 |
+
bm = GeoTr_Seg_model(im.cuda())
|
153 |
+
bm = bm.cpu()
|
154 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h))
|
155 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h))
|
156 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
157 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
158 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)
|
159 |
+
|
160 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
161 |
+
img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
|
162 |
+
|
163 |
+
ill_rec=False
|
164 |
+
|
165 |
+
if ill_rec:
|
166 |
+
img_ill = rec_ill(IllTr_model, img_geo)
|
167 |
+
return Image.fromarray(img_ill)
|
168 |
+
else:
|
169 |
+
return Image.fromarray(img_geo)
|
170 |
+
|
171 |
+
# Define Gradio interface
|
172 |
+
input_image = gr.inputs.Image()
|
173 |
+
output_image = gr.outputs.Image(type='pil')
|
174 |
+
|
175 |
+
|
176 |
+
iface = gr.Interface(fn=process_image, inputs=input_image, outputs=output_image, title="Image Correction")
|
177 |
+
iface.launch(server_port=1234, server_name="0.0.0.0")
|
178 |
+
|
extractor.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class ResidualBlock(nn.Module):
|
7 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
8 |
+
super(ResidualBlock, self).__init__()
|
9 |
+
|
10 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
11 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
12 |
+
self.relu = nn.ReLU(inplace=True)
|
13 |
+
|
14 |
+
num_groups = planes // 8
|
15 |
+
|
16 |
+
if norm_fn == 'group':
|
17 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
18 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
19 |
+
if not stride == 1:
|
20 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
21 |
+
|
22 |
+
elif norm_fn == 'batch':
|
23 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
24 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
25 |
+
if not stride == 1:
|
26 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
27 |
+
|
28 |
+
elif norm_fn == 'instance':
|
29 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
30 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
31 |
+
if not stride == 1:
|
32 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
33 |
+
|
34 |
+
elif norm_fn == 'none':
|
35 |
+
self.norm1 = nn.Sequential()
|
36 |
+
self.norm2 = nn.Sequential()
|
37 |
+
if not stride == 1:
|
38 |
+
self.norm3 = nn.Sequential()
|
39 |
+
|
40 |
+
if stride == 1:
|
41 |
+
self.downsample = None
|
42 |
+
|
43 |
+
else:
|
44 |
+
self.downsample = nn.Sequential(
|
45 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
46 |
+
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
y = x
|
50 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
51 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
52 |
+
|
53 |
+
if self.downsample is not None:
|
54 |
+
x = self.downsample(x)
|
55 |
+
|
56 |
+
return self.relu(x+y)
|
57 |
+
|
58 |
+
|
59 |
+
class BasicEncoder(nn.Module):
|
60 |
+
def __init__(self, output_dim=128, norm_fn='batch'):
|
61 |
+
super(BasicEncoder, self).__init__()
|
62 |
+
self.norm_fn = norm_fn
|
63 |
+
|
64 |
+
if self.norm_fn == 'group':
|
65 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
66 |
+
|
67 |
+
elif self.norm_fn == 'batch':
|
68 |
+
self.norm1 = nn.BatchNorm2d(64)
|
69 |
+
|
70 |
+
elif self.norm_fn == 'instance':
|
71 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
72 |
+
|
73 |
+
elif self.norm_fn == 'none':
|
74 |
+
self.norm1 = nn.Sequential()
|
75 |
+
|
76 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
77 |
+
self.relu1 = nn.ReLU(inplace=True)
|
78 |
+
|
79 |
+
self.in_planes = 64
|
80 |
+
self.layer1 = self._make_layer(64, stride=1)
|
81 |
+
self.layer2 = self._make_layer(128, stride=2)
|
82 |
+
self.layer3 = self._make_layer(192, stride=2)
|
83 |
+
|
84 |
+
# output convolution
|
85 |
+
self.conv2 = nn.Conv2d(192, output_dim, kernel_size=1)
|
86 |
+
|
87 |
+
for m in self.modules():
|
88 |
+
if isinstance(m, nn.Conv2d):
|
89 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
90 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
91 |
+
if m.weight is not None:
|
92 |
+
nn.init.constant_(m.weight, 1)
|
93 |
+
if m.bias is not None:
|
94 |
+
nn.init.constant_(m.bias, 0)
|
95 |
+
|
96 |
+
def _make_layer(self, dim, stride=1):
|
97 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
98 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
99 |
+
layers = (layer1, layer2)
|
100 |
+
|
101 |
+
self.in_planes = dim
|
102 |
+
return nn.Sequential(*layers)
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
x = self.conv1(x)
|
106 |
+
x = self.norm1(x)
|
107 |
+
x = self.relu1(x)
|
108 |
+
|
109 |
+
x = self.layer1(x)
|
110 |
+
x = self.layer2(x)
|
111 |
+
x = self.layer3(x)
|
112 |
+
|
113 |
+
x = self.conv2(x)
|
114 |
+
|
115 |
+
return x
|
position_encoding.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
"""
|
3 |
+
Various positional encodings for the transformer.
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from typing import List
|
9 |
+
from typing import Optional
|
10 |
+
from torch import Tensor
|
11 |
+
|
12 |
+
|
13 |
+
class NestedTensor(object):
|
14 |
+
def __init__(self, tensors, mask: Optional[Tensor]):
|
15 |
+
self.tensors = tensors
|
16 |
+
self.mask = mask
|
17 |
+
|
18 |
+
def to(self, device):
|
19 |
+
# type: (Device) -> NestedTensor # noqa
|
20 |
+
cast_tensor = self.tensors.to(device)
|
21 |
+
mask = self.mask
|
22 |
+
if mask is not None:
|
23 |
+
assert mask is not None
|
24 |
+
cast_mask = mask.to(device)
|
25 |
+
else:
|
26 |
+
cast_mask = None
|
27 |
+
return NestedTensor(cast_tensor, cast_mask)
|
28 |
+
|
29 |
+
def decompose(self):
|
30 |
+
return self.tensors, self.mask
|
31 |
+
|
32 |
+
def __repr__(self):
|
33 |
+
return str(self.tensors)
|
34 |
+
|
35 |
+
|
36 |
+
class PositionEmbeddingSine(nn.Module):
|
37 |
+
"""
|
38 |
+
This is a more standard version of the position embedding, very similar to the one
|
39 |
+
used by the Attention is all you need paper, generalized to work on images.
|
40 |
+
"""
|
41 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
42 |
+
super().__init__()
|
43 |
+
self.num_pos_feats = num_pos_feats
|
44 |
+
self.temperature = temperature
|
45 |
+
self.normalize = normalize
|
46 |
+
if scale is not None and normalize is False:
|
47 |
+
raise ValueError("normalize should be True if scale is passed")
|
48 |
+
if scale is None:
|
49 |
+
scale = 2 * math.pi
|
50 |
+
self.scale = scale
|
51 |
+
|
52 |
+
def forward(self, mask):
|
53 |
+
assert mask is not None
|
54 |
+
y_embed = mask.cumsum(1, dtype=torch.float32)
|
55 |
+
x_embed = mask.cumsum(2, dtype=torch.float32)
|
56 |
+
if self.normalize:
|
57 |
+
eps = 1e-6
|
58 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
59 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
60 |
+
|
61 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32).cuda()
|
62 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
63 |
+
|
64 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
65 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
66 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
67 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
68 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
69 |
+
# print(pos.shape)
|
70 |
+
return pos
|
71 |
+
|
72 |
+
|
73 |
+
class PositionEmbeddingLearned(nn.Module):
|
74 |
+
"""
|
75 |
+
Absolute pos embedding, learned.
|
76 |
+
"""
|
77 |
+
def __init__(self, num_pos_feats=256):
|
78 |
+
super().__init__()
|
79 |
+
self.row_embed = nn.Embedding(50, num_pos_feats)
|
80 |
+
self.col_embed = nn.Embedding(50, num_pos_feats)
|
81 |
+
self.reset_parameters()
|
82 |
+
|
83 |
+
def reset_parameters(self):
|
84 |
+
nn.init.uniform_(self.row_embed.weight)
|
85 |
+
nn.init.uniform_(self.col_embed.weight)
|
86 |
+
|
87 |
+
def forward(self, tensor_list: NestedTensor):
|
88 |
+
x = tensor_list.tensors
|
89 |
+
h, w = x.shape[-2:]
|
90 |
+
i = torch.arange(w, device=x.device)
|
91 |
+
j = torch.arange(h, device=x.device)
|
92 |
+
x_emb = self.col_embed(i)
|
93 |
+
y_emb = self.row_embed(j)
|
94 |
+
pos = torch.cat([
|
95 |
+
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
96 |
+
y_emb.unsqueeze(1).repeat(1, w, 1),
|
97 |
+
], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
|
98 |
+
return pos
|
99 |
+
|
100 |
+
def build_position_encoding(hidden_dim=512, position_embedding='sine'):
|
101 |
+
N_steps = hidden_dim // 2
|
102 |
+
if position_embedding in ('v2', 'sine'):
|
103 |
+
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
|
104 |
+
elif position_embedding in ('v3', 'learned'):
|
105 |
+
position_embedding = PositionEmbeddingLearned(N_steps)
|
106 |
+
else:
|
107 |
+
raise ValueError(f"not supported {position_embedding}")
|
108 |
+
|
109 |
+
return position_embedding
|
110 |
+
|
111 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv_python
|
3 |
+
Pillow
|
4 |
+
scikit_image
|
5 |
+
thop
|
6 |
+
torch
|
7 |
+
gradio
|
seg.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
class sobel_net(nn.Module):
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
self.conv_opx = nn.Conv2d(1, 1, 3, bias=False)
|
12 |
+
self.conv_opy = nn.Conv2d(1, 1, 3, bias=False)
|
13 |
+
sobel_kernelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype='float32').reshape((1, 1, 3, 3))
|
14 |
+
sobel_kernely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype='float32').reshape((1, 1, 3, 3))
|
15 |
+
self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx)
|
16 |
+
self.conv_opy.weight.data = torch.from_numpy(sobel_kernely)
|
17 |
+
|
18 |
+
for p in self.parameters():
|
19 |
+
p.requires_grad = False
|
20 |
+
|
21 |
+
def forward(self, im): # input rgb
|
22 |
+
x = (0.299 * im[:, 0, :, :] + 0.587 * im[:, 1, :, :] + 0.114 * im[:, 2, :, :]).unsqueeze(1) # rgb2gray
|
23 |
+
gradx = self.conv_opx(x)
|
24 |
+
grady = self.conv_opy(x)
|
25 |
+
|
26 |
+
x = (gradx ** 2 + grady ** 2) ** 0.5
|
27 |
+
x = (x - x.min()) / (x.max() - x.min())
|
28 |
+
x = F.pad(x, (1, 1, 1, 1))
|
29 |
+
|
30 |
+
x = torch.cat([im, x], dim=1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class REBNCONV(nn.Module):
|
35 |
+
def __init__(self, in_ch=3, out_ch=3, dirate=1):
|
36 |
+
super(REBNCONV, self).__init__()
|
37 |
+
|
38 |
+
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate)
|
39 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
40 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
hx = x
|
44 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
45 |
+
|
46 |
+
return xout
|
47 |
+
|
48 |
+
|
49 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
50 |
+
def _upsample_like(src, tar):
|
51 |
+
src = F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=False)
|
52 |
+
|
53 |
+
return src
|
54 |
+
|
55 |
+
|
56 |
+
### RSU-7 ###
|
57 |
+
class RSU7(nn.Module): # UNet07DRES(nn.Module):
|
58 |
+
|
59 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
60 |
+
super(RSU7, self).__init__()
|
61 |
+
|
62 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
63 |
+
|
64 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
65 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
66 |
+
|
67 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
68 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
69 |
+
|
70 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
71 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
72 |
+
|
73 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
74 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
75 |
+
|
76 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
77 |
+
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
78 |
+
|
79 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
80 |
+
|
81 |
+
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
82 |
+
|
83 |
+
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
84 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
85 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
86 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
87 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
88 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
hx = x
|
92 |
+
hxin = self.rebnconvin(hx)
|
93 |
+
|
94 |
+
hx1 = self.rebnconv1(hxin)
|
95 |
+
hx = self.pool1(hx1)
|
96 |
+
|
97 |
+
hx2 = self.rebnconv2(hx)
|
98 |
+
hx = self.pool2(hx2)
|
99 |
+
|
100 |
+
hx3 = self.rebnconv3(hx)
|
101 |
+
hx = self.pool3(hx3)
|
102 |
+
|
103 |
+
hx4 = self.rebnconv4(hx)
|
104 |
+
hx = self.pool4(hx4)
|
105 |
+
|
106 |
+
hx5 = self.rebnconv5(hx)
|
107 |
+
hx = self.pool5(hx5)
|
108 |
+
|
109 |
+
hx6 = self.rebnconv6(hx)
|
110 |
+
|
111 |
+
hx7 = self.rebnconv7(hx6)
|
112 |
+
|
113 |
+
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
114 |
+
hx6dup = _upsample_like(hx6d, hx5)
|
115 |
+
|
116 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
117 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
118 |
+
|
119 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
120 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
121 |
+
|
122 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
123 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
124 |
+
|
125 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
126 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
127 |
+
|
128 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
129 |
+
|
130 |
+
return hx1d + hxin
|
131 |
+
|
132 |
+
|
133 |
+
### RSU-6 ###
|
134 |
+
class RSU6(nn.Module): # UNet06DRES(nn.Module):
|
135 |
+
|
136 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
137 |
+
super(RSU6, self).__init__()
|
138 |
+
|
139 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
140 |
+
|
141 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
142 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
143 |
+
|
144 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
145 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
146 |
+
|
147 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
148 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
149 |
+
|
150 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
151 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
152 |
+
|
153 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
154 |
+
|
155 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
156 |
+
|
157 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
158 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
159 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
160 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
161 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
hx = x
|
165 |
+
|
166 |
+
hxin = self.rebnconvin(hx)
|
167 |
+
|
168 |
+
hx1 = self.rebnconv1(hxin)
|
169 |
+
hx = self.pool1(hx1)
|
170 |
+
|
171 |
+
hx2 = self.rebnconv2(hx)
|
172 |
+
hx = self.pool2(hx2)
|
173 |
+
|
174 |
+
hx3 = self.rebnconv3(hx)
|
175 |
+
hx = self.pool3(hx3)
|
176 |
+
|
177 |
+
hx4 = self.rebnconv4(hx)
|
178 |
+
hx = self.pool4(hx4)
|
179 |
+
|
180 |
+
hx5 = self.rebnconv5(hx)
|
181 |
+
|
182 |
+
hx6 = self.rebnconv6(hx5)
|
183 |
+
|
184 |
+
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
185 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
186 |
+
|
187 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
188 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
189 |
+
|
190 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
191 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
192 |
+
|
193 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
194 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
195 |
+
|
196 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
197 |
+
|
198 |
+
return hx1d + hxin
|
199 |
+
|
200 |
+
|
201 |
+
### RSU-5 ###
|
202 |
+
class RSU5(nn.Module): # UNet05DRES(nn.Module):
|
203 |
+
|
204 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
205 |
+
super(RSU5, self).__init__()
|
206 |
+
|
207 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
208 |
+
|
209 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
210 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
211 |
+
|
212 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
213 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
214 |
+
|
215 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
216 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
217 |
+
|
218 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
219 |
+
|
220 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
221 |
+
|
222 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
223 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
224 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
225 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
hx = x
|
229 |
+
|
230 |
+
hxin = self.rebnconvin(hx)
|
231 |
+
|
232 |
+
hx1 = self.rebnconv1(hxin)
|
233 |
+
hx = self.pool1(hx1)
|
234 |
+
|
235 |
+
hx2 = self.rebnconv2(hx)
|
236 |
+
hx = self.pool2(hx2)
|
237 |
+
|
238 |
+
hx3 = self.rebnconv3(hx)
|
239 |
+
hx = self.pool3(hx3)
|
240 |
+
|
241 |
+
hx4 = self.rebnconv4(hx)
|
242 |
+
|
243 |
+
hx5 = self.rebnconv5(hx4)
|
244 |
+
|
245 |
+
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
246 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
247 |
+
|
248 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
249 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
250 |
+
|
251 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
252 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
253 |
+
|
254 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
255 |
+
|
256 |
+
return hx1d + hxin
|
257 |
+
|
258 |
+
|
259 |
+
### RSU-4 ###
|
260 |
+
class RSU4(nn.Module): # UNet04DRES(nn.Module):
|
261 |
+
|
262 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
263 |
+
super(RSU4, self).__init__()
|
264 |
+
|
265 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
266 |
+
|
267 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
268 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
269 |
+
|
270 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
271 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
272 |
+
|
273 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
274 |
+
|
275 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
276 |
+
|
277 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
278 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
279 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
280 |
+
|
281 |
+
def forward(self, x):
|
282 |
+
hx = x
|
283 |
+
|
284 |
+
hxin = self.rebnconvin(hx)
|
285 |
+
|
286 |
+
hx1 = self.rebnconv1(hxin)
|
287 |
+
hx = self.pool1(hx1)
|
288 |
+
|
289 |
+
hx2 = self.rebnconv2(hx)
|
290 |
+
hx = self.pool2(hx2)
|
291 |
+
|
292 |
+
hx3 = self.rebnconv3(hx)
|
293 |
+
|
294 |
+
hx4 = self.rebnconv4(hx3)
|
295 |
+
|
296 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
297 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
298 |
+
|
299 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
300 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
301 |
+
|
302 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
303 |
+
|
304 |
+
return hx1d + hxin
|
305 |
+
|
306 |
+
|
307 |
+
### RSU-4F ###
|
308 |
+
class RSU4F(nn.Module): # UNet04FRES(nn.Module):
|
309 |
+
|
310 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
311 |
+
super(RSU4F, self).__init__()
|
312 |
+
|
313 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
314 |
+
|
315 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
316 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
317 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
318 |
+
|
319 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
320 |
+
|
321 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
322 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
323 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
324 |
+
|
325 |
+
def forward(self, x):
|
326 |
+
hx = x
|
327 |
+
|
328 |
+
hxin = self.rebnconvin(hx)
|
329 |
+
|
330 |
+
hx1 = self.rebnconv1(hxin)
|
331 |
+
hx2 = self.rebnconv2(hx1)
|
332 |
+
hx3 = self.rebnconv3(hx2)
|
333 |
+
|
334 |
+
hx4 = self.rebnconv4(hx3)
|
335 |
+
|
336 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
337 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
338 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
339 |
+
|
340 |
+
return hx1d + hxin
|
341 |
+
|
342 |
+
|
343 |
+
##### U^2-Net ####
|
344 |
+
class U2NET(nn.Module):
|
345 |
+
|
346 |
+
def __init__(self, in_ch=3, out_ch=1):
|
347 |
+
super(U2NET, self).__init__()
|
348 |
+
self.edge = sobel_net()
|
349 |
+
|
350 |
+
self.stage1 = RSU7(in_ch, 32, 64)
|
351 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
352 |
+
|
353 |
+
self.stage2 = RSU6(64, 32, 128)
|
354 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
355 |
+
|
356 |
+
self.stage3 = RSU5(128, 64, 256)
|
357 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
358 |
+
|
359 |
+
self.stage4 = RSU4(256, 128, 512)
|
360 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
361 |
+
|
362 |
+
self.stage5 = RSU4F(512, 256, 512)
|
363 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
364 |
+
|
365 |
+
self.stage6 = RSU4F(512, 256, 512)
|
366 |
+
|
367 |
+
# decoder
|
368 |
+
self.stage5d = RSU4F(1024, 256, 512)
|
369 |
+
self.stage4d = RSU4(1024, 128, 256)
|
370 |
+
self.stage3d = RSU5(512, 64, 128)
|
371 |
+
self.stage2d = RSU6(256, 32, 64)
|
372 |
+
self.stage1d = RSU7(128, 16, 64)
|
373 |
+
|
374 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
375 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
376 |
+
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
377 |
+
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
378 |
+
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
379 |
+
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
380 |
+
|
381 |
+
self.outconv = nn.Conv2d(6, out_ch, 1)
|
382 |
+
|
383 |
+
def forward(self, x):
|
384 |
+
x = self.edge(x)
|
385 |
+
hx = x
|
386 |
+
|
387 |
+
# stage 1
|
388 |
+
hx1 = self.stage1(hx)
|
389 |
+
hx = self.pool12(hx1)
|
390 |
+
|
391 |
+
# stage 2
|
392 |
+
hx2 = self.stage2(hx)
|
393 |
+
hx = self.pool23(hx2)
|
394 |
+
|
395 |
+
# stage 3
|
396 |
+
hx3 = self.stage3(hx)
|
397 |
+
hx = self.pool34(hx3)
|
398 |
+
|
399 |
+
# stage 4
|
400 |
+
hx4 = self.stage4(hx)
|
401 |
+
hx = self.pool45(hx4)
|
402 |
+
|
403 |
+
# stage 5
|
404 |
+
hx5 = self.stage5(hx)
|
405 |
+
hx = self.pool56(hx5)
|
406 |
+
|
407 |
+
# stage 6
|
408 |
+
hx6 = self.stage6(hx)
|
409 |
+
hx6up = _upsample_like(hx6, hx5)
|
410 |
+
|
411 |
+
# -------------------- decoder --------------------
|
412 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
413 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
414 |
+
|
415 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
416 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
417 |
+
|
418 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
419 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
420 |
+
|
421 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
422 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
423 |
+
|
424 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
425 |
+
|
426 |
+
# side output
|
427 |
+
d1 = self.side1(hx1d)
|
428 |
+
|
429 |
+
d2 = self.side2(hx2d)
|
430 |
+
d2 = _upsample_like(d2, d1)
|
431 |
+
|
432 |
+
d3 = self.side3(hx3d)
|
433 |
+
d3 = _upsample_like(d3, d1)
|
434 |
+
|
435 |
+
d4 = self.side4(hx4d)
|
436 |
+
d4 = _upsample_like(d4, d1)
|
437 |
+
|
438 |
+
d5 = self.side5(hx5d)
|
439 |
+
d5 = _upsample_like(d5, d1)
|
440 |
+
|
441 |
+
d6 = self.side6(hx6)
|
442 |
+
d6 = _upsample_like(d6, d1)
|
443 |
+
|
444 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
445 |
+
|
446 |
+
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(
|
447 |
+
d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
448 |
+
|
449 |
+
|
450 |
+
### U^2-Net small ###
|
451 |
+
class U2NETP(nn.Module):
|
452 |
+
|
453 |
+
def __init__(self, in_ch=3, out_ch=1):
|
454 |
+
super(U2NETP, self).__init__()
|
455 |
+
|
456 |
+
self.stage1 = RSU7(in_ch, 16, 64)
|
457 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
458 |
+
|
459 |
+
self.stage2 = RSU6(64, 16, 64)
|
460 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
461 |
+
|
462 |
+
self.stage3 = RSU5(64, 16, 64)
|
463 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
464 |
+
|
465 |
+
self.stage4 = RSU4(64, 16, 64)
|
466 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
467 |
+
|
468 |
+
self.stage5 = RSU4F(64, 16, 64)
|
469 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
470 |
+
|
471 |
+
self.stage6 = RSU4F(64, 16, 64)
|
472 |
+
|
473 |
+
# decoder
|
474 |
+
self.stage5d = RSU4F(128, 16, 64)
|
475 |
+
self.stage4d = RSU4(128, 16, 64)
|
476 |
+
self.stage3d = RSU5(128, 16, 64)
|
477 |
+
self.stage2d = RSU6(128, 16, 64)
|
478 |
+
self.stage1d = RSU7(128, 16, 64)
|
479 |
+
|
480 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
481 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
482 |
+
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1)
|
483 |
+
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1)
|
484 |
+
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1)
|
485 |
+
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1)
|
486 |
+
|
487 |
+
self.outconv = nn.Conv2d(6, out_ch, 1)
|
488 |
+
|
489 |
+
def forward(self, x):
|
490 |
+
hx = x
|
491 |
+
|
492 |
+
# stage 1
|
493 |
+
hx1 = self.stage1(hx)
|
494 |
+
hx = self.pool12(hx1)
|
495 |
+
|
496 |
+
# stage 2
|
497 |
+
hx2 = self.stage2(hx)
|
498 |
+
hx = self.pool23(hx2)
|
499 |
+
|
500 |
+
# stage 3
|
501 |
+
hx3 = self.stage3(hx)
|
502 |
+
hx = self.pool34(hx3)
|
503 |
+
|
504 |
+
# stage 4
|
505 |
+
hx4 = self.stage4(hx)
|
506 |
+
hx = self.pool45(hx4)
|
507 |
+
|
508 |
+
# stage 5
|
509 |
+
hx5 = self.stage5(hx)
|
510 |
+
hx = self.pool56(hx5)
|
511 |
+
|
512 |
+
# stage 6
|
513 |
+
hx6 = self.stage6(hx)
|
514 |
+
hx6up = _upsample_like(hx6, hx5)
|
515 |
+
|
516 |
+
# decoder
|
517 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
518 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
519 |
+
|
520 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
521 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
522 |
+
|
523 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
524 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
525 |
+
|
526 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
527 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
528 |
+
|
529 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
530 |
+
|
531 |
+
# side output
|
532 |
+
d1 = self.side1(hx1d)
|
533 |
+
|
534 |
+
d2 = self.side2(hx2d)
|
535 |
+
d2 = _upsample_like(d2, d1)
|
536 |
+
|
537 |
+
d3 = self.side3(hx3d)
|
538 |
+
d3 = _upsample_like(d3, d1)
|
539 |
+
|
540 |
+
d4 = self.side4(hx4d)
|
541 |
+
d4 = _upsample_like(d4, d1)
|
542 |
+
|
543 |
+
d5 = self.side5(hx5d)
|
544 |
+
d5 = _upsample_like(d5, d1)
|
545 |
+
|
546 |
+
d6 = self.side6(hx6)
|
547 |
+
d6 = _upsample_like(d6, d1)
|
548 |
+
|
549 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
550 |
+
|
551 |
+
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(
|
552 |
+
d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
553 |
+
|
554 |
+
|
555 |
+
def get_parameter_number(net):
|
556 |
+
total_num = sum(p.numel() for p in net.parameters())
|
557 |
+
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
|
558 |
+
return {'Total': total_num, 'Trainable': trainable_num}
|
559 |
+
|
560 |
+
|
561 |
+
if __name__ == '__main__':
|
562 |
+
net = U2NET(4, 1).cuda()
|
563 |
+
print(get_parameter_number(net)) # 69090500 加attention后69442032
|
564 |
+
with torch.no_grad():
|
565 |
+
inputs = torch.zeros(1, 3, 256, 256).cuda()
|
566 |
+
outs = net(inputs)
|
567 |
+
print(outs[0].shape) # torch.Size([2, 3, 256, 256]) torch.Size([2, 2, 256, 256])
|