ArtTrain / appcheck.py
Haimi's picture
Rename app.py to appcheck.py
a9e729e
raw
history blame contribute delete
768 Bytes
import gradio as gr
import torch
# Load the state dictionary from the .pth file
model_path = './checkpoints/artgan_pix2pix/latest_net_G.pth'
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
# Print statistics about the weights
for name, param in state_dict.items():
if param.dtype == torch.float32: # Check if the parameter is of type float
print(f"Layer: {name}")
print(f"\tShape: {param.shape}")
print(f"\tMean: {param.mean().item()}")
print(f"\tStandard Deviation: {param.std().item()}")
print(f"\tMin: {param.min().item()}")
print(f"\tMax: {param.max().item()}")
else:
print(f"Layer: {name}")
print(f"\tShape: {param.shape}")
print(f"\tType: {param.dtype}")