import gradio as gr import torch # Load the state dictionary from the .pth file model_path = './checkpoints/artgan_pix2pix/latest_net_G.pth' state_dict = torch.load(model_path, map_location=torch.device('cpu')) # Print statistics about the weights for name, param in state_dict.items(): if param.dtype == torch.float32: # Check if the parameter is of type float print(f"Layer: {name}") print(f"\tShape: {param.shape}") print(f"\tMean: {param.mean().item()}") print(f"\tStandard Deviation: {param.std().item()}") print(f"\tMin: {param.min().item()}") print(f"\tMax: {param.max().item()}") else: print(f"Layer: {name}") print(f"\tShape: {param.shape}") print(f"\tType: {param.dtype}")