HaiderAUT's picture
Update app.py
999af57 verified
###############################################################################
# CAA ⇄ OneReg | Dual Document Cleaning & Comparison Tool #
###############################################################################
import io
import os
import re
import html
import json
import traceback
import difflib
import platform
import pandas as pd
from datetime import datetime
import fitz # PyMuPDF
from PyPDF2 import PdfReader # plain text extraction
import gradio as gr # UI
from dotenv import load_dotenv # optional .env support
# ─────────────────────────────────────────────────────────────────────────────
# 1. PDF & TEXT PROCESSING
# ─────────────────────────────────────────────────────────────────────────────
def extract_pdf_text(pdf_file) -> str:
"""Extracts text from a PDF file using PyPDF2."""
reader = PdfReader(pdf_file)
return "\n".join(p.extract_text() or "" for p in reader.pages)
def extract_pdf_word(pdf_file) -> str:
"""Extracts text from PDF using PyMuPDF (fitz) for better layout preservation."""
doc = fitz.open(pdf_file)
text_blocks = [page.get_text("text") for page in doc]
return "\n".join(filter(None, text_blocks))
def merge_pdf_wrapped_lines(raw_text: str) -> list[str]:
"""Re-join hard-wrapped lines from PDF extraction."""
merged = []
for ln in raw_text.splitlines():
ln_stripped = ln.strip()
if not ln_stripped: continue
if merged:
prev = merged[-1]
if (re.search(r'[a-z]$', prev) and re.match(r'^[\(a-z]', ln_stripped)) or \
(re.search(r'\b(?:rule|may|and|or)$', prev, re.I) and re.match(r'^\d+\.\d+', ln_stripped)) or \
(re.search(r'\brule\s+\d+\.$', prev, re.I) and re.match(r'^\d', ln_stripped)):
merged[-1] = prev + (' ' if re.search(r'[a-z]$', prev) else '') + ln_stripped
continue
merged.append(ln_stripped)
return merged
# ─────────────────────────────────────────────────────────────────────────────
# 2. RULE PARSING & CLEANING (Initial Automated Pass)
# ─────────────────────────────────────────────────────────────────────────────
# --- Regex for rule structure ---
rule_pat = re.compile(
r'^(?:(?:\d+\.){2,}\s*)?(?P<base_rule>\d+\.\d+(?:[A-Z]?))(?P<parens>(?:\s*\([^)]+\))*?)\s*(?P<title>.*)$',
re.IGNORECASE
)
appendix_item_pat = re.compile(
r'^\s*([A-Z])\.(\d+(?:\.\d+)*)(?:\s*\(([^)]+)\))?\s+(?P<title>[A-Za-z0-9].*)$',
re.IGNORECASE
)
subpart_pat = re.compile(
r'^\s*\d+\.\s*Subpart\s+([A-Z]{1,2})\s*[β€”-]\s*(.+)$',
re.IGNORECASE
)
# --- Regex for cleaning ---
page_pat = re.compile(r'Page\s+\d+\s*/\s*\d+', re.IGNORECASE)
date_pat = re.compile(
r'(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z.]*\s+\d{1,2},?\s+\d{4}',
re.IGNORECASE
)
header_pat = re.compile(
r'^(?:Purpose\s+)?(?:[A-Z][a-z]{2}\.)\s+\d{1,2},\s*\d{4},.*$', re.IGNORECASE
)
def clean_line(line: str, source: str) -> str:
"""Performs a basic, automated cleaning pass on a line of text."""
if source == "onereg":
line = re.sub(r'\b(?:\d+\.){3,}\s*', '', line) # Zap outline IDs 1.2.3.
if header_pat.match(line):
return ""
# Generic cleaning for both
line = page_pat.sub('', line)
line = date_pat.sub('', line)
line = re.sub(r'Civil Aviation Rules\s+Part\s+\d+\s+CAA Consolidation', '', line, flags=re.I)
line = re.sub(r'^\d{1,2}\s+[A-Za-z]+\s+\d{4}\s*\d*\s*CAA of NZ', '', line, flags=re.I)
line = re.sub(r'\S+@\S+', '', line) # email
line = re.sub(r'\s{2,}', ' ', line)
return line.strip()
def parse_rules(text: str, source: str) -> dict[str, str]:
"""Parses raw text into a dictionary of {rule_id: rule_text}."""
rules, current, title = {}, None, ""
lines = merge_pdf_wrapped_lines(text)
for raw_line in lines:
line = clean_line(raw_line, source)
if not line: continue
m_ap_item = appendix_item_pat.match(line)
m_sp = subpart_pat.match(line)
m_rule = rule_pat.match(line)
new_key = None
new_title = ""
if m_ap_item:
key_parts = [m_ap_item.group(1).upper(), m_ap_item.group(2)]
if m_ap_item.group(3): key_parts.append(f"({m_ap_item.group(3).strip()})")
new_key = ".".join(key_parts)
new_title = m_ap_item.group('title').strip()
elif m_sp:
new_key = f"subpart-{m_sp.group(1).upper()}"
new_title = f"Subpart {m_sp.group(1).upper()} β€” {m_sp.group(2).strip()}"
elif m_rule:
base = m_rule.group('base_rule')
parens_str = m_rule.group('parens') or ""
new_key = base + "".join(re.findall(r'\([^)]+\)', parens_str))
new_title = m_rule.group('title').strip()
if new_key:
current = new_key
title = new_title
rules.setdefault(current, [])
if title:
rules[current].append(title)
elif current:
if not title or line.lower() != title.lower():
rules[current].append(line)
return {k: " ".join(v).strip() for k, v in rules.items()}
# ─────────────────────────────────────────────────────────────────────────────
# 3. COMPARISON & UI LOGIC
# ─────────────────────────────────────────────────────────────────────────────
def diff_unified(one: str, caa: str) -> str:
"""Generates a single HTML string showing differences inline."""
sm = difflib.SequenceMatcher(None, one, caa, autojunk=False)
output = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
one_segment = html.escape(one[i1:i2])
caa_segment = html.escape(caa[j1:j2])
if tag == "equal":
output.append(one_segment)
elif tag == "delete":
output.append(
f"<del style='background:#fdd; text-decoration: line-through; color: #000;'>{one_segment}</del>")
elif tag == "insert":
output.append(f"<ins style='background:#dfd; text-decoration: none; color: #000;'>{caa_segment}</ins>")
elif tag == "replace":
output.append(
f"<del style='background:#fdd; text-decoration: line-through; color: #000;'>{one_segment}</del>")
output.append(f"<ins style='background:#dfd; text-decoration: none; color: #000;'>{caa_segment}</ins>")
return f"<span style='white-space: pre-wrap; color: var(--text);'>{''.join(output)}</span>"
def combined_sort_key(key: str):
"""Robustly sorts rules, subparts, and appendices."""
if key.startswith("subpart-"):
return (1, key)
sortable_tuple = ()
if re.match(r'^\d+\.\d+', key):
sortable_tuple += (2,)
elif re.match(r'^[A-Z]\.', key):
sortable_tuple += (3,)
else:
return (4, key)
parts = re.split(r'[.()]', key)
parts = [p for p in parts if p]
for part in parts:
if part.isdigit():
sortable_tuple += ((1, int(part)),)
else:
sortable_tuple += ((2, part.lower()),)
return sortable_tuple
def save_clean_and_dirty_versions(dirty_one, dirty_caa, clean_one, clean_caa, filename: str) -> str:
"""Saves both original and cleaned versions to a .jsonl file."""
all_ids = sorted(
list(set(dirty_one.keys()) | set(dirty_caa.keys())),
key=combined_sort_key
)
with open(filename, 'w', encoding='utf-8') as f:
for rule_id in all_ids:
# OneReg record
record_one = {
"rule_id": rule_id,
"source": "onereg",
"dirty_text": dirty_one.get(rule_id, ""),
"clean_text": clean_one.get(rule_id, "")
}
f.write(json.dumps(record_one) + '\n')
# CAA record
record_caa = {
"rule_id": rule_id,
"source": "caa",
"dirty_text": dirty_caa.get(rule_id, ""),
"clean_text": clean_caa.get(rule_id, "")
}
f.write(json.dumps(record_caa) + '\n')
return filename
# --- STAGE 1: Process PDFs and prepare for user review ---
def stage1_process_and_review(part, onereg_pdf, caa_pdf):
if not (onereg_pdf and caa_pdf):
raise gr.Error("Please upload both PDF files.")
try:
# Process OneReg PDF
raw_one = extract_pdf_word(onereg_pdf.name)
one_data = parse_rules(raw_one, "onereg")
# Process CAA PDF
raw_caa = extract_pdf_text(caa_pdf.name)
caa_data = parse_rules(raw_caa, "caa")
# Get all rule IDs and sort them
all_ids = sorted(
list(set(one_data.keys()) | set(caa_data.keys())),
key=combined_sort_key
)
rules_to_review = [
r for r in all_ids
if r.startswith(f"{part}.") or r.startswith("subpart-") or re.match(r'^[A-Z]\.', r)
]
# Prepare DataFrame for user editing with both documents
review_rows = []
for rule_id in rules_to_review:
one_text = one_data.get(rule_id, "[Rule not found in OneReg]")
caa_text = caa_data.get(rule_id, "[Rule not found in CAA]")
review_rows.append([rule_id, one_text, caa_text])
df = pd.DataFrame(review_rows, columns=["Rule ID", "OneReg Text (Editable)", "CAA Text (Editable)"])
return {
original_one_state: one_data,
original_caa_state: caa_data,
review_df: gr.update(value=df, visible=True),
btn_finalize: gr.update(visible=True),
}
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Failed during initial processing: {e}")
# --- STAGE 2: Take user-cleaned text and perform the final comparison ---
def stage2_finalize_and_compare(review_df, original_one, original_caa):
if review_df is None or review_df.empty:
raise gr.Error("No data to compare. Please process the files first.")
# Convert the user-edited DataFrame back into dictionaries
clean_one_data = pd.Series(review_df['OneReg Text (Editable)'].values, index=review_df['Rule ID']).to_dict()
clean_caa_data = pd.Series(review_df['CAA Text (Editable)'].values, index=review_df['Rule ID']).to_dict()
# Save the training data file
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
jsonl_filename = f"cleaned_rules_{timestamp}.jsonl"
saved_filepath = save_clean_and_dirty_versions(original_one, original_caa, clean_one_data, clean_caa_data,
jsonl_filename)
# Perform the final comparison
all_ids = sorted(
list(set(clean_one_data.keys()) | set(clean_caa_data.keys())),
key=combined_sort_key
)
sections = []
for rule_id in all_ids:
one_clean = clean_one_data.get(rule_id, "")
caa_clean = clean_caa_data.get(rule_id, "")
diff_html = diff_unified(one_clean, caa_clean)
sections.append(f"""
<div class="rule-section">
<strong class="rule-label">{rule_id}</strong>
<div class="rule-content">
{diff_html}
</div>
</div>
<hr>
""")
style = """
<style>
body { font-family: sans-serif; color: var(--body-text-color); }
.rule-label { font-size: 1.1em; background: #f0f0f0; padding: 5px; display: block; border-top-left-radius: 5px; border-top-right-radius: 5px; }
.rule-content { padding: 10px; border: 1px solid #f0f0f0; border-top: none; margin-bottom: 1em; white-space: pre-wrap; }
hr { border: none; border-top: 1px solid #ccc; margin: 1.5em 0; }
</style>
"""
final_html = style + "".join(sections)
return {
out_html: gr.update(value=final_html, visible=True),
download_jsonl: gr.update(value=saved_filepath, visible=True)
}
# ─────────────────────────────────────────────────────────────────────────────
# 4. GRADIO UI LAYOUT
# ─────────────────────────────────────────────────────────────────────────────
with gr.Blocks(theme=gr.themes.Soft(), title="Dual Rule Cleaning Tool") as demo:
gr.Markdown("## CAA ⇄ OneReg β€” Dual Document Cleaning & Comparison Tool")
# State to hold the original "dirty" data between steps
original_one_state = gr.State({})
original_caa_state = gr.State({})
# --- Stage 1: Inputs and Initial Processing ---
with gr.Row():
part_num = gr.Textbox(label="Part Number", value="139")
onereg_pdf = gr.File(label="Upload OneReg PDF")
caa_pdf = gr.File(label="Upload CAA PDF")
btn_process = gr.Button("1. Process PDFs & Prepare for Cleaning", variant="secondary")
gr.Markdown("---")
# --- Stage 2: User Review and Cleaning ---
gr.Markdown("### 2. Review and Manually Clean Both Documents")
gr.Markdown(
"Edit the text in the table below to remove any headers, footers, or other noise from **both** documents. Once you are finished, click the 'Finalize, Compare & Save' button.")
review_df = gr.DataFrame(
headers=["Rule ID", "OneReg Text (Editable)", "CAA Text (Editable)"],
datatype=["str", "str", "str"],
interactive=True,
visible=False,
wrap=True,
row_count=(10, "dynamic")
)
btn_finalize = gr.Button("3. Finalize, Compare & Save", variant="primary", visible=False)
gr.Markdown("---")
# --- Stage 3: Final Comparison Output & Export ---
gr.Markdown("### 4. Final Comparison & Export")
gr.Markdown(
"Deletions from OneReg are in <del style='background:#fdd;'>red</del> and additions from CAA are in <ins style='background:#dfd;'>green</ins>.")
out_html = gr.HTML(visible=False)
download_jsonl = gr.File(label="Download Cleaned & Dirty Data (.jsonl)", visible=False)
# --- Wire up UI events ---
btn_process.click(
fn=stage1_process_and_review,
inputs=[part_num, onereg_pdf, caa_pdf],
outputs=[original_one_state, original_caa_state, review_df, btn_finalize]
)
btn_finalize.click(
fn=stage2_finalize_and_compare,
inputs=[review_df, original_one_state, original_caa_state],
outputs=[out_html, download_jsonl]
)
if __name__ == "__main__":
current_os = platform.system()
server_name = "0.0.0.0" if current_os == "Linux" else "127.0.0.1"
demo.launch(
server_name=server_name,
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)),
)